Solve for a
a<\frac{13}{2}
Share
Copied to clipboard
\frac{15.3}{3}>a-1.4
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
\frac{153}{30}>a-1.4
Expand \frac{15.3}{3} by multiplying both numerator and the denominator by 10.
\frac{51}{10}>a-1.4
Reduce the fraction \frac{153}{30} to lowest terms by extracting and canceling out 3.
a-1.4<\frac{51}{10}
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
a<\frac{51}{10}+1.4
Add 1.4 to both sides.
a<\frac{51}{10}+\frac{7}{5}
Convert decimal number 1.4 to fraction \frac{14}{10}. Reduce the fraction \frac{14}{10} to lowest terms by extracting and canceling out 2.
a<\frac{51}{10}+\frac{14}{10}
Least common multiple of 10 and 5 is 10. Convert \frac{51}{10} and \frac{7}{5} to fractions with denominator 10.
a<\frac{51+14}{10}
Since \frac{51}{10} and \frac{14}{10} have the same denominator, add them by adding their numerators.
a<\frac{65}{10}
Add 51 and 14 to get 65.
a<\frac{13}{2}
Reduce the fraction \frac{65}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}