Solve for x
x = \frac{\sqrt{33} + 9}{8} \approx 1.843070331
x=\frac{9-\sqrt{33}}{8}\approx 0.406929669
Graph
Share
Copied to clipboard
3+36x-16x^{2}=15
Swap sides so that all variable terms are on the left hand side.
3+36x-16x^{2}-15=0
Subtract 15 from both sides.
-12+36x-16x^{2}=0
Subtract 15 from 3 to get -12.
-16x^{2}+36x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{36^{2}-4\left(-16\right)\left(-12\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 36 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\left(-16\right)\left(-12\right)}}{2\left(-16\right)}
Square 36.
x=\frac{-36±\sqrt{1296+64\left(-12\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-36±\sqrt{1296-768}}{2\left(-16\right)}
Multiply 64 times -12.
x=\frac{-36±\sqrt{528}}{2\left(-16\right)}
Add 1296 to -768.
x=\frac{-36±4\sqrt{33}}{2\left(-16\right)}
Take the square root of 528.
x=\frac{-36±4\sqrt{33}}{-32}
Multiply 2 times -16.
x=\frac{4\sqrt{33}-36}{-32}
Now solve the equation x=\frac{-36±4\sqrt{33}}{-32} when ± is plus. Add -36 to 4\sqrt{33}.
x=\frac{9-\sqrt{33}}{8}
Divide -36+4\sqrt{33} by -32.
x=\frac{-4\sqrt{33}-36}{-32}
Now solve the equation x=\frac{-36±4\sqrt{33}}{-32} when ± is minus. Subtract 4\sqrt{33} from -36.
x=\frac{\sqrt{33}+9}{8}
Divide -36-4\sqrt{33} by -32.
x=\frac{9-\sqrt{33}}{8} x=\frac{\sqrt{33}+9}{8}
The equation is now solved.
3+36x-16x^{2}=15
Swap sides so that all variable terms are on the left hand side.
36x-16x^{2}=15-3
Subtract 3 from both sides.
36x-16x^{2}=12
Subtract 3 from 15 to get 12.
-16x^{2}+36x=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16x^{2}+36x}{-16}=\frac{12}{-16}
Divide both sides by -16.
x^{2}+\frac{36}{-16}x=\frac{12}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-\frac{9}{4}x=\frac{12}{-16}
Reduce the fraction \frac{36}{-16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{9}{4}x=-\frac{3}{4}
Reduce the fraction \frac{12}{-16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{9}{4}x+\left(-\frac{9}{8}\right)^{2}=-\frac{3}{4}+\left(-\frac{9}{8}\right)^{2}
Divide -\frac{9}{4}, the coefficient of the x term, by 2 to get -\frac{9}{8}. Then add the square of -\frac{9}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{4}x+\frac{81}{64}=-\frac{3}{4}+\frac{81}{64}
Square -\frac{9}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{4}x+\frac{81}{64}=\frac{33}{64}
Add -\frac{3}{4} to \frac{81}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{8}\right)^{2}=\frac{33}{64}
Factor x^{2}-\frac{9}{4}x+\frac{81}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{8}\right)^{2}}=\sqrt{\frac{33}{64}}
Take the square root of both sides of the equation.
x-\frac{9}{8}=\frac{\sqrt{33}}{8} x-\frac{9}{8}=-\frac{\sqrt{33}}{8}
Simplify.
x=\frac{\sqrt{33}+9}{8} x=\frac{9-\sqrt{33}}{8}
Add \frac{9}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}