Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

15z^{2}+34z+15=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-34±\sqrt{34^{2}-4\times 15\times 15}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 15 for a, 34 for b, and 15 for c in the quadratic formula.
z=\frac{-34±16}{30}
Do the calculations.
z=-\frac{3}{5} z=-\frac{5}{3}
Solve the equation z=\frac{-34±16}{30} when ± is plus and when ± is minus.
15\left(z+\frac{3}{5}\right)\left(z+\frac{5}{3}\right)>0
Rewrite the inequality by using the obtained solutions.
z+\frac{3}{5}<0 z+\frac{5}{3}<0
For the product to be positive, z+\frac{3}{5} and z+\frac{5}{3} have to be both negative or both positive. Consider the case when z+\frac{3}{5} and z+\frac{5}{3} are both negative.
z<-\frac{5}{3}
The solution satisfying both inequalities is z<-\frac{5}{3}.
z+\frac{5}{3}>0 z+\frac{3}{5}>0
Consider the case when z+\frac{3}{5} and z+\frac{5}{3} are both positive.
z>-\frac{3}{5}
The solution satisfying both inequalities is z>-\frac{3}{5}.
z<-\frac{5}{3}\text{; }z>-\frac{3}{5}
The final solution is the union of the obtained solutions.