Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a+b=2 ab=15\left(-8\right)=-120
Factor the expression by grouping. First, the expression needs to be rewritten as 15z^{2}+az+bz-8. To find a and b, set up a system to be solved.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Calculate the sum for each pair.
a=-10 b=12
The solution is the pair that gives sum 2.
\left(15z^{2}-10z\right)+\left(12z-8\right)
Rewrite 15z^{2}+2z-8 as \left(15z^{2}-10z\right)+\left(12z-8\right).
5z\left(3z-2\right)+4\left(3z-2\right)
Factor out 5z in the first and 4 in the second group.
\left(3z-2\right)\left(5z+4\right)
Factor out common term 3z-2 by using distributive property.
15z^{2}+2z-8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-2±\sqrt{2^{2}-4\times 15\left(-8\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-2±\sqrt{4-4\times 15\left(-8\right)}}{2\times 15}
Square 2.
z=\frac{-2±\sqrt{4-60\left(-8\right)}}{2\times 15}
Multiply -4 times 15.
z=\frac{-2±\sqrt{4+480}}{2\times 15}
Multiply -60 times -8.
z=\frac{-2±\sqrt{484}}{2\times 15}
Add 4 to 480.
z=\frac{-2±22}{2\times 15}
Take the square root of 484.
z=\frac{-2±22}{30}
Multiply 2 times 15.
z=\frac{20}{30}
Now solve the equation z=\frac{-2±22}{30} when ± is plus. Add -2 to 22.
z=\frac{2}{3}
Reduce the fraction \frac{20}{30} to lowest terms by extracting and canceling out 10.
z=-\frac{24}{30}
Now solve the equation z=\frac{-2±22}{30} when ± is minus. Subtract 22 from -2.
z=-\frac{4}{5}
Reduce the fraction \frac{-24}{30} to lowest terms by extracting and canceling out 6.
15z^{2}+2z-8=15\left(z-\frac{2}{3}\right)\left(z-\left(-\frac{4}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and -\frac{4}{5} for x_{2}.
15z^{2}+2z-8=15\left(z-\frac{2}{3}\right)\left(z+\frac{4}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15z^{2}+2z-8=15\times \frac{3z-2}{3}\left(z+\frac{4}{5}\right)
Subtract \frac{2}{3} from z by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
15z^{2}+2z-8=15\times \frac{3z-2}{3}\times \frac{5z+4}{5}
Add \frac{4}{5} to z by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15z^{2}+2z-8=15\times \frac{\left(3z-2\right)\left(5z+4\right)}{3\times 5}
Multiply \frac{3z-2}{3} times \frac{5z+4}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
15z^{2}+2z-8=15\times \frac{\left(3z-2\right)\left(5z+4\right)}{15}
Multiply 3 times 5.
15z^{2}+2z-8=\left(3z-2\right)\left(5z+4\right)
Cancel out 15, the greatest common factor in 15 and 15.
x ^ 2 +\frac{2}{15}x -\frac{8}{15} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = -\frac{2}{15} rs = -\frac{8}{15}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{15} - u s = -\frac{1}{15} + u
Two numbers r and s sum up to -\frac{2}{15} exactly when the average of the two numbers is \frac{1}{2}*-\frac{2}{15} = -\frac{1}{15}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{15} - u) (-\frac{1}{15} + u) = -\frac{8}{15}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{8}{15}
\frac{1}{225} - u^2 = -\frac{8}{15}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{8}{15}-\frac{1}{225} = -\frac{121}{225}
Simplify the expression by subtracting \frac{1}{225} on both sides
u^2 = \frac{121}{225} u = \pm\sqrt{\frac{121}{225}} = \pm \frac{11}{15}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{15} - \frac{11}{15} = -0.800 s = -\frac{1}{15} + \frac{11}{15} = 0.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.