Factor
3\left(y-2\right)\left(5y+4\right)
Evaluate
3\left(y-2\right)\left(5y+4\right)
Graph
Share
Copied to clipboard
3\left(5y^{2}-6y-8\right)
Factor out 3.
a+b=-6 ab=5\left(-8\right)=-40
Consider 5y^{2}-6y-8. Factor the expression by grouping. First, the expression needs to be rewritten as 5y^{2}+ay+by-8. To find a and b, set up a system to be solved.
1,-40 2,-20 4,-10 5,-8
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -40.
1-40=-39 2-20=-18 4-10=-6 5-8=-3
Calculate the sum for each pair.
a=-10 b=4
The solution is the pair that gives sum -6.
\left(5y^{2}-10y\right)+\left(4y-8\right)
Rewrite 5y^{2}-6y-8 as \left(5y^{2}-10y\right)+\left(4y-8\right).
5y\left(y-2\right)+4\left(y-2\right)
Factor out 5y in the first and 4 in the second group.
\left(y-2\right)\left(5y+4\right)
Factor out common term y-2 by using distributive property.
3\left(y-2\right)\left(5y+4\right)
Rewrite the complete factored expression.
15y^{2}-18y-24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 15\left(-24\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-18\right)±\sqrt{324-4\times 15\left(-24\right)}}{2\times 15}
Square -18.
y=\frac{-\left(-18\right)±\sqrt{324-60\left(-24\right)}}{2\times 15}
Multiply -4 times 15.
y=\frac{-\left(-18\right)±\sqrt{324+1440}}{2\times 15}
Multiply -60 times -24.
y=\frac{-\left(-18\right)±\sqrt{1764}}{2\times 15}
Add 324 to 1440.
y=\frac{-\left(-18\right)±42}{2\times 15}
Take the square root of 1764.
y=\frac{18±42}{2\times 15}
The opposite of -18 is 18.
y=\frac{18±42}{30}
Multiply 2 times 15.
y=\frac{60}{30}
Now solve the equation y=\frac{18±42}{30} when ± is plus. Add 18 to 42.
y=2
Divide 60 by 30.
y=-\frac{24}{30}
Now solve the equation y=\frac{18±42}{30} when ± is minus. Subtract 42 from 18.
y=-\frac{4}{5}
Reduce the fraction \frac{-24}{30} to lowest terms by extracting and canceling out 6.
15y^{2}-18y-24=15\left(y-2\right)\left(y-\left(-\frac{4}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{4}{5} for x_{2}.
15y^{2}-18y-24=15\left(y-2\right)\left(y+\frac{4}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15y^{2}-18y-24=15\left(y-2\right)\times \frac{5y+4}{5}
Add \frac{4}{5} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15y^{2}-18y-24=3\left(y-2\right)\left(5y+4\right)
Cancel out 5, the greatest common factor in 15 and 5.
x ^ 2 -\frac{6}{5}x -\frac{8}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = \frac{6}{5} rs = -\frac{8}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{5} - u s = \frac{3}{5} + u
Two numbers r and s sum up to \frac{6}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{6}{5} = \frac{3}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{5} - u) (\frac{3}{5} + u) = -\frac{8}{5}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{8}{5}
\frac{9}{25} - u^2 = -\frac{8}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{8}{5}-\frac{9}{25} = -\frac{49}{25}
Simplify the expression by subtracting \frac{9}{25} on both sides
u^2 = \frac{49}{25} u = \pm\sqrt{\frac{49}{25}} = \pm \frac{7}{5}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{5} - \frac{7}{5} = -0.800 s = \frac{3}{5} + \frac{7}{5} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}