Solve for y
y=\frac{7}{75}\approx 0.093333333
Graph
Share
Copied to clipboard
15y=30y+6\left(-\frac{2}{5}\right)+1
Use the distributive property to multiply 6 by 5y-\frac{2}{5}.
15y=30y+\frac{6\left(-2\right)}{5}+1
Express 6\left(-\frac{2}{5}\right) as a single fraction.
15y=30y+\frac{-12}{5}+1
Multiply 6 and -2 to get -12.
15y=30y-\frac{12}{5}+1
Fraction \frac{-12}{5} can be rewritten as -\frac{12}{5} by extracting the negative sign.
15y=30y-\frac{12}{5}+\frac{5}{5}
Convert 1 to fraction \frac{5}{5}.
15y=30y+\frac{-12+5}{5}
Since -\frac{12}{5} and \frac{5}{5} have the same denominator, add them by adding their numerators.
15y=30y-\frac{7}{5}
Add -12 and 5 to get -7.
15y-30y=-\frac{7}{5}
Subtract 30y from both sides.
-15y=-\frac{7}{5}
Combine 15y and -30y to get -15y.
y=\frac{-\frac{7}{5}}{-15}
Divide both sides by -15.
y=\frac{-7}{5\left(-15\right)}
Express \frac{-\frac{7}{5}}{-15} as a single fraction.
y=\frac{-7}{-75}
Multiply 5 and -15 to get -75.
y=\frac{7}{75}
Fraction \frac{-7}{-75} can be simplified to \frac{7}{75} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}