Solve for x
x=\sqrt{65}+15\approx 23.062257748
x=15-\sqrt{65}\approx 6.937742252
Graph
Share
Copied to clipboard
-\frac{1}{2}x^{2}+15x-80=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\left(-\frac{1}{2}\right)\left(-80\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 15 for b, and -80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\left(-\frac{1}{2}\right)\left(-80\right)}}{2\left(-\frac{1}{2}\right)}
Square 15.
x=\frac{-15±\sqrt{225+2\left(-80\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-15±\sqrt{225-160}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -80.
x=\frac{-15±\sqrt{65}}{2\left(-\frac{1}{2}\right)}
Add 225 to -160.
x=\frac{-15±\sqrt{65}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\sqrt{65}-15}{-1}
Now solve the equation x=\frac{-15±\sqrt{65}}{-1} when ± is plus. Add -15 to \sqrt{65}.
x=15-\sqrt{65}
Divide -15+\sqrt{65} by -1.
x=\frac{-\sqrt{65}-15}{-1}
Now solve the equation x=\frac{-15±\sqrt{65}}{-1} when ± is minus. Subtract \sqrt{65} from -15.
x=\sqrt{65}+15
Divide -15-\sqrt{65} by -1.
x=15-\sqrt{65} x=\sqrt{65}+15
The equation is now solved.
-\frac{1}{2}x^{2}+15x-80=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{2}x^{2}+15x-80-\left(-80\right)=-\left(-80\right)
Add 80 to both sides of the equation.
-\frac{1}{2}x^{2}+15x=-\left(-80\right)
Subtracting -80 from itself leaves 0.
-\frac{1}{2}x^{2}+15x=80
Subtract -80 from 0.
\frac{-\frac{1}{2}x^{2}+15x}{-\frac{1}{2}}=\frac{80}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{15}{-\frac{1}{2}}x=\frac{80}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-30x=\frac{80}{-\frac{1}{2}}
Divide 15 by -\frac{1}{2} by multiplying 15 by the reciprocal of -\frac{1}{2}.
x^{2}-30x=-160
Divide 80 by -\frac{1}{2} by multiplying 80 by the reciprocal of -\frac{1}{2}.
x^{2}-30x+\left(-15\right)^{2}=-160+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=-160+225
Square -15.
x^{2}-30x+225=65
Add -160 to 225.
\left(x-15\right)^{2}=65
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{65}
Take the square root of both sides of the equation.
x-15=\sqrt{65} x-15=-\sqrt{65}
Simplify.
x=\sqrt{65}+15 x=15-\sqrt{65}
Add 15 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}