Solve for x
x=\frac{2\sqrt{3}}{3}-1\approx 0.154700538
x=-\frac{2\sqrt{3}}{3}-1\approx -2.154700538
Graph
Share
Copied to clipboard
15x^{2}+30x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\times 15\left(-5\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 30 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 15\left(-5\right)}}{2\times 15}
Square 30.
x=\frac{-30±\sqrt{900-60\left(-5\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-30±\sqrt{900+300}}{2\times 15}
Multiply -60 times -5.
x=\frac{-30±\sqrt{1200}}{2\times 15}
Add 900 to 300.
x=\frac{-30±20\sqrt{3}}{2\times 15}
Take the square root of 1200.
x=\frac{-30±20\sqrt{3}}{30}
Multiply 2 times 15.
x=\frac{20\sqrt{3}-30}{30}
Now solve the equation x=\frac{-30±20\sqrt{3}}{30} when ± is plus. Add -30 to 20\sqrt{3}.
x=\frac{2\sqrt{3}}{3}-1
Divide -30+20\sqrt{3} by 30.
x=\frac{-20\sqrt{3}-30}{30}
Now solve the equation x=\frac{-30±20\sqrt{3}}{30} when ± is minus. Subtract 20\sqrt{3} from -30.
x=-\frac{2\sqrt{3}}{3}-1
Divide -30-20\sqrt{3} by 30.
x=\frac{2\sqrt{3}}{3}-1 x=-\frac{2\sqrt{3}}{3}-1
The equation is now solved.
15x^{2}+30x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
15x^{2}+30x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
15x^{2}+30x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
15x^{2}+30x=5
Subtract -5 from 0.
\frac{15x^{2}+30x}{15}=\frac{5}{15}
Divide both sides by 15.
x^{2}+\frac{30}{15}x=\frac{5}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}+2x=\frac{5}{15}
Divide 30 by 15.
x^{2}+2x=\frac{1}{3}
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
x^{2}+2x+1^{2}=\frac{1}{3}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{1}{3}+1
Square 1.
x^{2}+2x+1=\frac{4}{3}
Add \frac{1}{3} to 1.
\left(x+1\right)^{2}=\frac{4}{3}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{4}{3}}
Take the square root of both sides of the equation.
x+1=\frac{2\sqrt{3}}{3} x+1=-\frac{2\sqrt{3}}{3}
Simplify.
x=\frac{2\sqrt{3}}{3}-1 x=-\frac{2\sqrt{3}}{3}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}