Factor
\left(3x-8\right)\left(5x+2\right)
Evaluate
\left(3x-8\right)\left(5x+2\right)
Graph
Share
Copied to clipboard
a+b=-34 ab=15\left(-16\right)=-240
Factor the expression by grouping. First, the expression needs to be rewritten as 15x^{2}+ax+bx-16. To find a and b, set up a system to be solved.
1,-240 2,-120 3,-80 4,-60 5,-48 6,-40 8,-30 10,-24 12,-20 15,-16
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -240.
1-240=-239 2-120=-118 3-80=-77 4-60=-56 5-48=-43 6-40=-34 8-30=-22 10-24=-14 12-20=-8 15-16=-1
Calculate the sum for each pair.
a=-40 b=6
The solution is the pair that gives sum -34.
\left(15x^{2}-40x\right)+\left(6x-16\right)
Rewrite 15x^{2}-34x-16 as \left(15x^{2}-40x\right)+\left(6x-16\right).
5x\left(3x-8\right)+2\left(3x-8\right)
Factor out 5x in the first and 2 in the second group.
\left(3x-8\right)\left(5x+2\right)
Factor out common term 3x-8 by using distributive property.
15x^{2}-34x-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 15\left(-16\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-34\right)±\sqrt{1156-4\times 15\left(-16\right)}}{2\times 15}
Square -34.
x=\frac{-\left(-34\right)±\sqrt{1156-60\left(-16\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-34\right)±\sqrt{1156+960}}{2\times 15}
Multiply -60 times -16.
x=\frac{-\left(-34\right)±\sqrt{2116}}{2\times 15}
Add 1156 to 960.
x=\frac{-\left(-34\right)±46}{2\times 15}
Take the square root of 2116.
x=\frac{34±46}{2\times 15}
The opposite of -34 is 34.
x=\frac{34±46}{30}
Multiply 2 times 15.
x=\frac{80}{30}
Now solve the equation x=\frac{34±46}{30} when ± is plus. Add 34 to 46.
x=\frac{8}{3}
Reduce the fraction \frac{80}{30} to lowest terms by extracting and canceling out 10.
x=-\frac{12}{30}
Now solve the equation x=\frac{34±46}{30} when ± is minus. Subtract 46 from 34.
x=-\frac{2}{5}
Reduce the fraction \frac{-12}{30} to lowest terms by extracting and canceling out 6.
15x^{2}-34x-16=15\left(x-\frac{8}{3}\right)\left(x-\left(-\frac{2}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{8}{3} for x_{1} and -\frac{2}{5} for x_{2}.
15x^{2}-34x-16=15\left(x-\frac{8}{3}\right)\left(x+\frac{2}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15x^{2}-34x-16=15\times \frac{3x-8}{3}\left(x+\frac{2}{5}\right)
Subtract \frac{8}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}-34x-16=15\times \frac{3x-8}{3}\times \frac{5x+2}{5}
Add \frac{2}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15x^{2}-34x-16=15\times \frac{\left(3x-8\right)\left(5x+2\right)}{3\times 5}
Multiply \frac{3x-8}{3} times \frac{5x+2}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
15x^{2}-34x-16=15\times \frac{\left(3x-8\right)\left(5x+2\right)}{15}
Multiply 3 times 5.
15x^{2}-34x-16=\left(3x-8\right)\left(5x+2\right)
Cancel out 15, the greatest common factor in 15 and 15.
x ^ 2 -\frac{34}{15}x -\frac{16}{15} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = \frac{34}{15} rs = -\frac{16}{15}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{17}{15} - u s = \frac{17}{15} + u
Two numbers r and s sum up to \frac{34}{15} exactly when the average of the two numbers is \frac{1}{2}*\frac{34}{15} = \frac{17}{15}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{17}{15} - u) (\frac{17}{15} + u) = -\frac{16}{15}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{16}{15}
\frac{289}{225} - u^2 = -\frac{16}{15}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{16}{15}-\frac{289}{225} = -\frac{529}{225}
Simplify the expression by subtracting \frac{289}{225} on both sides
u^2 = \frac{529}{225} u = \pm\sqrt{\frac{529}{225}} = \pm \frac{23}{15}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{17}{15} - \frac{23}{15} = -0.400 s = \frac{17}{15} + \frac{23}{15} = 2.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}