Solve for x
x=\frac{\sqrt{106}-1}{15}\approx 0.619708676
x=\frac{-\sqrt{106}-1}{15}\approx -0.753042009
Graph
Share
Copied to clipboard
15x^{2}+2x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 15\left(-7\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 2 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 15\left(-7\right)}}{2\times 15}
Square 2.
x=\frac{-2±\sqrt{4-60\left(-7\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-2±\sqrt{4+420}}{2\times 15}
Multiply -60 times -7.
x=\frac{-2±\sqrt{424}}{2\times 15}
Add 4 to 420.
x=\frac{-2±2\sqrt{106}}{2\times 15}
Take the square root of 424.
x=\frac{-2±2\sqrt{106}}{30}
Multiply 2 times 15.
x=\frac{2\sqrt{106}-2}{30}
Now solve the equation x=\frac{-2±2\sqrt{106}}{30} when ± is plus. Add -2 to 2\sqrt{106}.
x=\frac{\sqrt{106}-1}{15}
Divide -2+2\sqrt{106} by 30.
x=\frac{-2\sqrt{106}-2}{30}
Now solve the equation x=\frac{-2±2\sqrt{106}}{30} when ± is minus. Subtract 2\sqrt{106} from -2.
x=\frac{-\sqrt{106}-1}{15}
Divide -2-2\sqrt{106} by 30.
x=\frac{\sqrt{106}-1}{15} x=\frac{-\sqrt{106}-1}{15}
The equation is now solved.
15x^{2}+2x-7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
15x^{2}+2x-7-\left(-7\right)=-\left(-7\right)
Add 7 to both sides of the equation.
15x^{2}+2x=-\left(-7\right)
Subtracting -7 from itself leaves 0.
15x^{2}+2x=7
Subtract -7 from 0.
\frac{15x^{2}+2x}{15}=\frac{7}{15}
Divide both sides by 15.
x^{2}+\frac{2}{15}x=\frac{7}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}+\frac{2}{15}x+\left(\frac{1}{15}\right)^{2}=\frac{7}{15}+\left(\frac{1}{15}\right)^{2}
Divide \frac{2}{15}, the coefficient of the x term, by 2 to get \frac{1}{15}. Then add the square of \frac{1}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{15}x+\frac{1}{225}=\frac{7}{15}+\frac{1}{225}
Square \frac{1}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{15}x+\frac{1}{225}=\frac{106}{225}
Add \frac{7}{15} to \frac{1}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{15}\right)^{2}=\frac{106}{225}
Factor x^{2}+\frac{2}{15}x+\frac{1}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{15}\right)^{2}}=\sqrt{\frac{106}{225}}
Take the square root of both sides of the equation.
x+\frac{1}{15}=\frac{\sqrt{106}}{15} x+\frac{1}{15}=-\frac{\sqrt{106}}{15}
Simplify.
x=\frac{\sqrt{106}-1}{15} x=\frac{-\sqrt{106}-1}{15}
Subtract \frac{1}{15} from both sides of the equation.
x ^ 2 +\frac{2}{15}x -\frac{7}{15} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = -\frac{2}{15} rs = -\frac{7}{15}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{15} - u s = -\frac{1}{15} + u
Two numbers r and s sum up to -\frac{2}{15} exactly when the average of the two numbers is \frac{1}{2}*-\frac{2}{15} = -\frac{1}{15}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{15} - u) (-\frac{1}{15} + u) = -\frac{7}{15}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{7}{15}
\frac{1}{225} - u^2 = -\frac{7}{15}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{7}{15}-\frac{1}{225} = -\frac{106}{225}
Simplify the expression by subtracting \frac{1}{225} on both sides
u^2 = \frac{106}{225} u = \pm\sqrt{\frac{106}{225}} = \pm \frac{\sqrt{106}}{15}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{15} - \frac{\sqrt{106}}{15} = -0.753 s = -\frac{1}{15} + \frac{\sqrt{106}}{15} = 0.620
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}