Factor
\left(3w-1\right)\left(5w+1\right)
Evaluate
\left(3w-1\right)\left(5w+1\right)
Share
Copied to clipboard
a+b=-2 ab=15\left(-1\right)=-15
Factor the expression by grouping. First, the expression needs to be rewritten as 15w^{2}+aw+bw-1. To find a and b, set up a system to be solved.
1,-15 3,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -15.
1-15=-14 3-5=-2
Calculate the sum for each pair.
a=-5 b=3
The solution is the pair that gives sum -2.
\left(15w^{2}-5w\right)+\left(3w-1\right)
Rewrite 15w^{2}-2w-1 as \left(15w^{2}-5w\right)+\left(3w-1\right).
5w\left(3w-1\right)+3w-1
Factor out 5w in 15w^{2}-5w.
\left(3w-1\right)\left(5w+1\right)
Factor out common term 3w-1 by using distributive property.
15w^{2}-2w-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
w=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 15\left(-1\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-\left(-2\right)±\sqrt{4-4\times 15\left(-1\right)}}{2\times 15}
Square -2.
w=\frac{-\left(-2\right)±\sqrt{4-60\left(-1\right)}}{2\times 15}
Multiply -4 times 15.
w=\frac{-\left(-2\right)±\sqrt{4+60}}{2\times 15}
Multiply -60 times -1.
w=\frac{-\left(-2\right)±\sqrt{64}}{2\times 15}
Add 4 to 60.
w=\frac{-\left(-2\right)±8}{2\times 15}
Take the square root of 64.
w=\frac{2±8}{2\times 15}
The opposite of -2 is 2.
w=\frac{2±8}{30}
Multiply 2 times 15.
w=\frac{10}{30}
Now solve the equation w=\frac{2±8}{30} when ± is plus. Add 2 to 8.
w=\frac{1}{3}
Reduce the fraction \frac{10}{30} to lowest terms by extracting and canceling out 10.
w=-\frac{6}{30}
Now solve the equation w=\frac{2±8}{30} when ± is minus. Subtract 8 from 2.
w=-\frac{1}{5}
Reduce the fraction \frac{-6}{30} to lowest terms by extracting and canceling out 6.
15w^{2}-2w-1=15\left(w-\frac{1}{3}\right)\left(w-\left(-\frac{1}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{3} for x_{1} and -\frac{1}{5} for x_{2}.
15w^{2}-2w-1=15\left(w-\frac{1}{3}\right)\left(w+\frac{1}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15w^{2}-2w-1=15\times \frac{3w-1}{3}\left(w+\frac{1}{5}\right)
Subtract \frac{1}{3} from w by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
15w^{2}-2w-1=15\times \frac{3w-1}{3}\times \frac{5w+1}{5}
Add \frac{1}{5} to w by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15w^{2}-2w-1=15\times \frac{\left(3w-1\right)\left(5w+1\right)}{3\times 5}
Multiply \frac{3w-1}{3} times \frac{5w+1}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
15w^{2}-2w-1=15\times \frac{\left(3w-1\right)\left(5w+1\right)}{15}
Multiply 3 times 5.
15w^{2}-2w-1=\left(3w-1\right)\left(5w+1\right)
Cancel out 15, the greatest common factor in 15 and 15.
x ^ 2 -\frac{2}{15}x -\frac{1}{15} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = \frac{2}{15} rs = -\frac{1}{15}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{1}{15} - u s = \frac{1}{15} + u
Two numbers r and s sum up to \frac{2}{15} exactly when the average of the two numbers is \frac{1}{2}*\frac{2}{15} = \frac{1}{15}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{1}{15} - u) (\frac{1}{15} + u) = -\frac{1}{15}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{15}
\frac{1}{225} - u^2 = -\frac{1}{15}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{15}-\frac{1}{225} = -\frac{16}{225}
Simplify the expression by subtracting \frac{1}{225} on both sides
u^2 = \frac{16}{225} u = \pm\sqrt{\frac{16}{225}} = \pm \frac{4}{15}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{1}{15} - \frac{4}{15} = -0.200 s = \frac{1}{15} + \frac{4}{15} = 0.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}