Evaluate
3\left(5p-1\right)\left(p+1\right)
Factor
3\left(5p-1\right)\left(p+1\right)
Share
Copied to clipboard
15p^{2}+7p-3+5p
Multiply p and p to get p^{2}.
15p^{2}+12p-3
Combine 7p and 5p to get 12p.
15p^{2}+12p-3
Multiply and combine like terms.
3\left(5p^{2}+4p-1\right)
Factor out 3.
a+b=4 ab=5\left(-1\right)=-5
Consider 5p^{2}+4p-1. Factor the expression by grouping. First, the expression needs to be rewritten as 5p^{2}+ap+bp-1. To find a and b, set up a system to be solved.
a=-1 b=5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(5p^{2}-p\right)+\left(5p-1\right)
Rewrite 5p^{2}+4p-1 as \left(5p^{2}-p\right)+\left(5p-1\right).
p\left(5p-1\right)+5p-1
Factor out p in 5p^{2}-p.
\left(5p-1\right)\left(p+1\right)
Factor out common term 5p-1 by using distributive property.
3\left(5p-1\right)\left(p+1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}