Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

15p^{2}+24p+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-24±\sqrt{24^{2}-4\times 15\times 8}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-24±\sqrt{576-4\times 15\times 8}}{2\times 15}
Square 24.
p=\frac{-24±\sqrt{576-60\times 8}}{2\times 15}
Multiply -4 times 15.
p=\frac{-24±\sqrt{576-480}}{2\times 15}
Multiply -60 times 8.
p=\frac{-24±\sqrt{96}}{2\times 15}
Add 576 to -480.
p=\frac{-24±4\sqrt{6}}{2\times 15}
Take the square root of 96.
p=\frac{-24±4\sqrt{6}}{30}
Multiply 2 times 15.
p=\frac{4\sqrt{6}-24}{30}
Now solve the equation p=\frac{-24±4\sqrt{6}}{30} when ± is plus. Add -24 to 4\sqrt{6}.
p=\frac{2\sqrt{6}}{15}-\frac{4}{5}
Divide -24+4\sqrt{6} by 30.
p=\frac{-4\sqrt{6}-24}{30}
Now solve the equation p=\frac{-24±4\sqrt{6}}{30} when ± is minus. Subtract 4\sqrt{6} from -24.
p=-\frac{2\sqrt{6}}{15}-\frac{4}{5}
Divide -24-4\sqrt{6} by 30.
15p^{2}+24p+8=15\left(p-\left(\frac{2\sqrt{6}}{15}-\frac{4}{5}\right)\right)\left(p-\left(-\frac{2\sqrt{6}}{15}-\frac{4}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{4}{5}+\frac{2\sqrt{6}}{15} for x_{1} and -\frac{4}{5}-\frac{2\sqrt{6}}{15} for x_{2}.
x ^ 2 +\frac{8}{5}x +\frac{8}{15} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = -\frac{8}{5} rs = \frac{8}{15}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{4}{5} - u s = -\frac{4}{5} + u
Two numbers r and s sum up to -\frac{8}{5} exactly when the average of the two numbers is \frac{1}{2}*-\frac{8}{5} = -\frac{4}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{4}{5} - u) (-\frac{4}{5} + u) = \frac{8}{15}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{8}{15}
\frac{16}{25} - u^2 = \frac{8}{15}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{8}{15}-\frac{16}{25} = -\frac{8}{75}
Simplify the expression by subtracting \frac{16}{25} on both sides
u^2 = \frac{8}{75} u = \pm\sqrt{\frac{8}{75}} = \pm \frac{\sqrt{8}}{\sqrt{75}}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{4}{5} - \frac{\sqrt{8}}{\sqrt{75}} = -1.127 s = -\frac{4}{5} + \frac{\sqrt{8}}{\sqrt{75}} = -0.473
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.