Solve for h
h=-\frac{1}{5}=-0.2
h = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Share
Copied to clipboard
15h^{2}-17h-4=0
Subtract 4 from both sides.
a+b=-17 ab=15\left(-4\right)=-60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 15h^{2}+ah+bh-4. To find a and b, set up a system to be solved.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Calculate the sum for each pair.
a=-20 b=3
The solution is the pair that gives sum -17.
\left(15h^{2}-20h\right)+\left(3h-4\right)
Rewrite 15h^{2}-17h-4 as \left(15h^{2}-20h\right)+\left(3h-4\right).
5h\left(3h-4\right)+3h-4
Factor out 5h in 15h^{2}-20h.
\left(3h-4\right)\left(5h+1\right)
Factor out common term 3h-4 by using distributive property.
h=\frac{4}{3} h=-\frac{1}{5}
To find equation solutions, solve 3h-4=0 and 5h+1=0.
15h^{2}-17h=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
15h^{2}-17h-4=4-4
Subtract 4 from both sides of the equation.
15h^{2}-17h-4=0
Subtracting 4 from itself leaves 0.
h=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 15\left(-4\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -17 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\left(-17\right)±\sqrt{289-4\times 15\left(-4\right)}}{2\times 15}
Square -17.
h=\frac{-\left(-17\right)±\sqrt{289-60\left(-4\right)}}{2\times 15}
Multiply -4 times 15.
h=\frac{-\left(-17\right)±\sqrt{289+240}}{2\times 15}
Multiply -60 times -4.
h=\frac{-\left(-17\right)±\sqrt{529}}{2\times 15}
Add 289 to 240.
h=\frac{-\left(-17\right)±23}{2\times 15}
Take the square root of 529.
h=\frac{17±23}{2\times 15}
The opposite of -17 is 17.
h=\frac{17±23}{30}
Multiply 2 times 15.
h=\frac{40}{30}
Now solve the equation h=\frac{17±23}{30} when ± is plus. Add 17 to 23.
h=\frac{4}{3}
Reduce the fraction \frac{40}{30} to lowest terms by extracting and canceling out 10.
h=-\frac{6}{30}
Now solve the equation h=\frac{17±23}{30} when ± is minus. Subtract 23 from 17.
h=-\frac{1}{5}
Reduce the fraction \frac{-6}{30} to lowest terms by extracting and canceling out 6.
h=\frac{4}{3} h=-\frac{1}{5}
The equation is now solved.
15h^{2}-17h=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{15h^{2}-17h}{15}=\frac{4}{15}
Divide both sides by 15.
h^{2}-\frac{17}{15}h=\frac{4}{15}
Dividing by 15 undoes the multiplication by 15.
h^{2}-\frac{17}{15}h+\left(-\frac{17}{30}\right)^{2}=\frac{4}{15}+\left(-\frac{17}{30}\right)^{2}
Divide -\frac{17}{15}, the coefficient of the x term, by 2 to get -\frac{17}{30}. Then add the square of -\frac{17}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}-\frac{17}{15}h+\frac{289}{900}=\frac{4}{15}+\frac{289}{900}
Square -\frac{17}{30} by squaring both the numerator and the denominator of the fraction.
h^{2}-\frac{17}{15}h+\frac{289}{900}=\frac{529}{900}
Add \frac{4}{15} to \frac{289}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(h-\frac{17}{30}\right)^{2}=\frac{529}{900}
Factor h^{2}-\frac{17}{15}h+\frac{289}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h-\frac{17}{30}\right)^{2}}=\sqrt{\frac{529}{900}}
Take the square root of both sides of the equation.
h-\frac{17}{30}=\frac{23}{30} h-\frac{17}{30}=-\frac{23}{30}
Simplify.
h=\frac{4}{3} h=-\frac{1}{5}
Add \frac{17}{30} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}