Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\left(3b^{2}-20b-32\right)
Factor out 5.
p+q=-20 pq=3\left(-32\right)=-96
Consider 3b^{2}-20b-32. Factor the expression by grouping. First, the expression needs to be rewritten as 3b^{2}+pb+qb-32. To find p and q, set up a system to be solved.
1,-96 2,-48 3,-32 4,-24 6,-16 8,-12
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -96.
1-96=-95 2-48=-46 3-32=-29 4-24=-20 6-16=-10 8-12=-4
Calculate the sum for each pair.
p=-24 q=4
The solution is the pair that gives sum -20.
\left(3b^{2}-24b\right)+\left(4b-32\right)
Rewrite 3b^{2}-20b-32 as \left(3b^{2}-24b\right)+\left(4b-32\right).
3b\left(b-8\right)+4\left(b-8\right)
Factor out 3b in the first and 4 in the second group.
\left(b-8\right)\left(3b+4\right)
Factor out common term b-8 by using distributive property.
5\left(b-8\right)\left(3b+4\right)
Rewrite the complete factored expression.
15b^{2}-100b-160=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 15\left(-160\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-100\right)±\sqrt{10000-4\times 15\left(-160\right)}}{2\times 15}
Square -100.
b=\frac{-\left(-100\right)±\sqrt{10000-60\left(-160\right)}}{2\times 15}
Multiply -4 times 15.
b=\frac{-\left(-100\right)±\sqrt{10000+9600}}{2\times 15}
Multiply -60 times -160.
b=\frac{-\left(-100\right)±\sqrt{19600}}{2\times 15}
Add 10000 to 9600.
b=\frac{-\left(-100\right)±140}{2\times 15}
Take the square root of 19600.
b=\frac{100±140}{2\times 15}
The opposite of -100 is 100.
b=\frac{100±140}{30}
Multiply 2 times 15.
b=\frac{240}{30}
Now solve the equation b=\frac{100±140}{30} when ± is plus. Add 100 to 140.
b=8
Divide 240 by 30.
b=-\frac{40}{30}
Now solve the equation b=\frac{100±140}{30} when ± is minus. Subtract 140 from 100.
b=-\frac{4}{3}
Reduce the fraction \frac{-40}{30} to lowest terms by extracting and canceling out 10.
15b^{2}-100b-160=15\left(b-8\right)\left(b-\left(-\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 8 for x_{1} and -\frac{4}{3} for x_{2}.
15b^{2}-100b-160=15\left(b-8\right)\left(b+\frac{4}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
15b^{2}-100b-160=15\left(b-8\right)\times \frac{3b+4}{3}
Add \frac{4}{3} to b by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
15b^{2}-100b-160=5\left(b-8\right)\left(3b+4\right)
Cancel out 3, the greatest common factor in 15 and 3.
x ^ 2 -\frac{20}{3}x -\frac{32}{3} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = \frac{20}{3} rs = -\frac{32}{3}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{10}{3} - u s = \frac{10}{3} + u
Two numbers r and s sum up to \frac{20}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{20}{3} = \frac{10}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{10}{3} - u) (\frac{10}{3} + u) = -\frac{32}{3}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{32}{3}
\frac{100}{9} - u^2 = -\frac{32}{3}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{32}{3}-\frac{100}{9} = -\frac{196}{9}
Simplify the expression by subtracting \frac{100}{9} on both sides
u^2 = \frac{196}{9} u = \pm\sqrt{\frac{196}{9}} = \pm \frac{14}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{10}{3} - \frac{14}{3} = -1.333 s = \frac{10}{3} + \frac{14}{3} = 8
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.