Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(5a-a^{2}\right)
Factor out 3.
a\left(5-a\right)
Consider 5a-a^{2}. Factor out a.
3a\left(-a+5\right)
Rewrite the complete factored expression.
-3a^{2}+15a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-15±\sqrt{15^{2}}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-15±15}{2\left(-3\right)}
Take the square root of 15^{2}.
a=\frac{-15±15}{-6}
Multiply 2 times -3.
a=\frac{0}{-6}
Now solve the equation a=\frac{-15±15}{-6} when ± is plus. Add -15 to 15.
a=0
Divide 0 by -6.
a=-\frac{30}{-6}
Now solve the equation a=\frac{-15±15}{-6} when ± is minus. Subtract 15 from -15.
a=5
Divide -30 by -6.
-3a^{2}+15a=-3a\left(a-5\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 5 for x_{2}.