Factor
\left(a-1\right)\left(15a-8\right)
Evaluate
\left(a-1\right)\left(15a-8\right)
Share
Copied to clipboard
p+q=-23 pq=15\times 8=120
Factor the expression by grouping. First, the expression needs to be rewritten as 15a^{2}+pa+qa+8. To find p and q, set up a system to be solved.
-1,-120 -2,-60 -3,-40 -4,-30 -5,-24 -6,-20 -8,-15 -10,-12
Since pq is positive, p and q have the same sign. Since p+q is negative, p and q are both negative. List all such integer pairs that give product 120.
-1-120=-121 -2-60=-62 -3-40=-43 -4-30=-34 -5-24=-29 -6-20=-26 -8-15=-23 -10-12=-22
Calculate the sum for each pair.
p=-15 q=-8
The solution is the pair that gives sum -23.
\left(15a^{2}-15a\right)+\left(-8a+8\right)
Rewrite 15a^{2}-23a+8 as \left(15a^{2}-15a\right)+\left(-8a+8\right).
15a\left(a-1\right)-8\left(a-1\right)
Factor out 15a in the first and -8 in the second group.
\left(a-1\right)\left(15a-8\right)
Factor out common term a-1 by using distributive property.
15a^{2}-23a+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 15\times 8}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-23\right)±\sqrt{529-4\times 15\times 8}}{2\times 15}
Square -23.
a=\frac{-\left(-23\right)±\sqrt{529-60\times 8}}{2\times 15}
Multiply -4 times 15.
a=\frac{-\left(-23\right)±\sqrt{529-480}}{2\times 15}
Multiply -60 times 8.
a=\frac{-\left(-23\right)±\sqrt{49}}{2\times 15}
Add 529 to -480.
a=\frac{-\left(-23\right)±7}{2\times 15}
Take the square root of 49.
a=\frac{23±7}{2\times 15}
The opposite of -23 is 23.
a=\frac{23±7}{30}
Multiply 2 times 15.
a=\frac{30}{30}
Now solve the equation a=\frac{23±7}{30} when ± is plus. Add 23 to 7.
a=1
Divide 30 by 30.
a=\frac{16}{30}
Now solve the equation a=\frac{23±7}{30} when ± is minus. Subtract 7 from 23.
a=\frac{8}{15}
Reduce the fraction \frac{16}{30} to lowest terms by extracting and canceling out 2.
15a^{2}-23a+8=15\left(a-1\right)\left(a-\frac{8}{15}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and \frac{8}{15} for x_{2}.
15a^{2}-23a+8=15\left(a-1\right)\times \frac{15a-8}{15}
Subtract \frac{8}{15} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
15a^{2}-23a+8=\left(a-1\right)\left(15a-8\right)
Cancel out 15, the greatest common factor in 15 and 15.
x ^ 2 -\frac{23}{15}x +\frac{8}{15} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 15
r + s = \frac{23}{15} rs = \frac{8}{15}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{23}{30} - u s = \frac{23}{30} + u
Two numbers r and s sum up to \frac{23}{15} exactly when the average of the two numbers is \frac{1}{2}*\frac{23}{15} = \frac{23}{30}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{23}{30} - u) (\frac{23}{30} + u) = \frac{8}{15}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{8}{15}
\frac{529}{900} - u^2 = \frac{8}{15}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{8}{15}-\frac{529}{900} = -\frac{49}{900}
Simplify the expression by subtracting \frac{529}{900} on both sides
u^2 = \frac{49}{900} u = \pm\sqrt{\frac{49}{900}} = \pm \frac{7}{30}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{23}{30} - \frac{7}{30} = 0.533 s = \frac{23}{30} + \frac{7}{30} = 1.000
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}