Solve for a
a\leq \frac{1}{4}
Share
Copied to clipboard
15-3a-4a-4-11\geq 3\left(a-9\right)+2\left(5a+11\right)
Use the distributive property to multiply -4 by a+1.
15-7a-4-11\geq 3\left(a-9\right)+2\left(5a+11\right)
Combine -3a and -4a to get -7a.
11-7a-11\geq 3\left(a-9\right)+2\left(5a+11\right)
Subtract 4 from 15 to get 11.
-7a\geq 3\left(a-9\right)+2\left(5a+11\right)
Subtract 11 from 11 to get 0.
-7a\geq 3a-27+2\left(5a+11\right)
Use the distributive property to multiply 3 by a-9.
-7a\geq 3a-27+10a+22
Use the distributive property to multiply 2 by 5a+11.
-7a\geq 13a-27+22
Combine 3a and 10a to get 13a.
-7a\geq 13a-5
Add -27 and 22 to get -5.
-7a-13a\geq -5
Subtract 13a from both sides.
-20a\geq -5
Combine -7a and -13a to get -20a.
a\leq \frac{-5}{-20}
Divide both sides by -20. Since -20 is negative, the inequality direction is changed.
a\leq \frac{1}{4}
Reduce the fraction \frac{-5}{-20} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}