Solve for m
m=-\frac{3ℓ}{4}+\left(\frac{15}{4}-7i\right)
Solve for ℓ
ℓ=-\frac{4m}{3}+\left(5-\frac{28}{3}i\right)
Share
Copied to clipboard
3ℓ+4m=15-28i
Swap sides so that all variable terms are on the left hand side.
4m=15-28i-3ℓ
Subtract 3ℓ from both sides.
\frac{4m}{4}=\frac{15-28i-3ℓ}{4}
Divide both sides by 4.
m=\frac{15-28i-3ℓ}{4}
Dividing by 4 undoes the multiplication by 4.
m=-\frac{3ℓ}{4}+\left(\frac{15}{4}-7i\right)
Divide 15-28i-3ℓ by 4.
3ℓ+4m=15-28i
Swap sides so that all variable terms are on the left hand side.
3ℓ=15-28i-4m
Subtract 4m from both sides.
\frac{3ℓ}{3}=\frac{15-28i-4m}{3}
Divide both sides by 3.
ℓ=\frac{15-28i-4m}{3}
Dividing by 3 undoes the multiplication by 3.
ℓ=-\frac{4m}{3}+\left(5-\frac{28}{3}i\right)
Divide 15-28i-4m by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}