Evaluate
\frac{97}{8}=12.125
Factor
\frac{97}{2 ^ {3}} = 12\frac{1}{8} = 12.125
Share
Copied to clipboard
15-\left(7-\left(\frac{8+1}{4}+\frac{1\times 8+7}{8}\right)\right)
Multiply 2 and 4 to get 8.
15-\left(7-\left(\frac{9}{4}+\frac{1\times 8+7}{8}\right)\right)
Add 8 and 1 to get 9.
15-\left(7-\left(\frac{9}{4}+\frac{8+7}{8}\right)\right)
Multiply 1 and 8 to get 8.
15-\left(7-\left(\frac{9}{4}+\frac{15}{8}\right)\right)
Add 8 and 7 to get 15.
15-\left(7-\left(\frac{18}{8}+\frac{15}{8}\right)\right)
Least common multiple of 4 and 8 is 8. Convert \frac{9}{4} and \frac{15}{8} to fractions with denominator 8.
15-\left(7-\frac{18+15}{8}\right)
Since \frac{18}{8} and \frac{15}{8} have the same denominator, add them by adding their numerators.
15-\left(7-\frac{33}{8}\right)
Add 18 and 15 to get 33.
15-\left(\frac{56}{8}-\frac{33}{8}\right)
Convert 7 to fraction \frac{56}{8}.
15-\frac{56-33}{8}
Since \frac{56}{8} and \frac{33}{8} have the same denominator, subtract them by subtracting their numerators.
15-\frac{23}{8}
Subtract 33 from 56 to get 23.
\frac{120}{8}-\frac{23}{8}
Convert 15 to fraction \frac{120}{8}.
\frac{120-23}{8}
Since \frac{120}{8} and \frac{23}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{97}{8}
Subtract 23 from 120 to get 97.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}