Solve for x (complex solution)
x=\frac{2+\sqrt{14}i}{3}\approx 0.666666667+1.247219129i
x=\frac{-\sqrt{14}i+2}{3}\approx 0.666666667-1.247219129i
Graph
Share
Copied to clipboard
15x^{2}-20x+30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 15\times 30}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -20 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 15\times 30}}{2\times 15}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-60\times 30}}{2\times 15}
Multiply -4 times 15.
x=\frac{-\left(-20\right)±\sqrt{400-1800}}{2\times 15}
Multiply -60 times 30.
x=\frac{-\left(-20\right)±\sqrt{-1400}}{2\times 15}
Add 400 to -1800.
x=\frac{-\left(-20\right)±10\sqrt{14}i}{2\times 15}
Take the square root of -1400.
x=\frac{20±10\sqrt{14}i}{2\times 15}
The opposite of -20 is 20.
x=\frac{20±10\sqrt{14}i}{30}
Multiply 2 times 15.
x=\frac{20+10\sqrt{14}i}{30}
Now solve the equation x=\frac{20±10\sqrt{14}i}{30} when ± is plus. Add 20 to 10i\sqrt{14}.
x=\frac{2+\sqrt{14}i}{3}
Divide 20+10i\sqrt{14} by 30.
x=\frac{-10\sqrt{14}i+20}{30}
Now solve the equation x=\frac{20±10\sqrt{14}i}{30} when ± is minus. Subtract 10i\sqrt{14} from 20.
x=\frac{-\sqrt{14}i+2}{3}
Divide 20-10i\sqrt{14} by 30.
x=\frac{2+\sqrt{14}i}{3} x=\frac{-\sqrt{14}i+2}{3}
The equation is now solved.
15x^{2}-20x+30=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
15x^{2}-20x+30-30=-30
Subtract 30 from both sides of the equation.
15x^{2}-20x=-30
Subtracting 30 from itself leaves 0.
\frac{15x^{2}-20x}{15}=-\frac{30}{15}
Divide both sides by 15.
x^{2}+\left(-\frac{20}{15}\right)x=-\frac{30}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}-\frac{4}{3}x=-\frac{30}{15}
Reduce the fraction \frac{-20}{15} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{4}{3}x=-2
Divide -30 by 15.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-2+\left(-\frac{2}{3}\right)^{2}
Divide -\frac{4}{3}, the coefficient of the x term, by 2 to get -\frac{2}{3}. Then add the square of -\frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-2+\frac{4}{9}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{14}{9}
Add -2 to \frac{4}{9}.
\left(x-\frac{2}{3}\right)^{2}=-\frac{14}{9}
Factor x^{2}-\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{-\frac{14}{9}}
Take the square root of both sides of the equation.
x-\frac{2}{3}=\frac{\sqrt{14}i}{3} x-\frac{2}{3}=-\frac{\sqrt{14}i}{3}
Simplify.
x=\frac{2+\sqrt{14}i}{3} x=\frac{-\sqrt{14}i+2}{3}
Add \frac{2}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}