Solve for x
x=\frac{\sqrt{7554}}{15}-\frac{1}{5}\approx 5.594250023
x=-\frac{\sqrt{7554}}{15}-\frac{1}{5}\approx -5.994250023
Graph
Share
Copied to clipboard
15x^{2}+6x+12=515
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
15x^{2}+6x+12-515=515-515
Subtract 515 from both sides of the equation.
15x^{2}+6x+12-515=0
Subtracting 515 from itself leaves 0.
15x^{2}+6x-503=0
Subtract 515 from 12.
x=\frac{-6±\sqrt{6^{2}-4\times 15\left(-503\right)}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, 6 for b, and -503 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 15\left(-503\right)}}{2\times 15}
Square 6.
x=\frac{-6±\sqrt{36-60\left(-503\right)}}{2\times 15}
Multiply -4 times 15.
x=\frac{-6±\sqrt{36+30180}}{2\times 15}
Multiply -60 times -503.
x=\frac{-6±\sqrt{30216}}{2\times 15}
Add 36 to 30180.
x=\frac{-6±2\sqrt{7554}}{2\times 15}
Take the square root of 30216.
x=\frac{-6±2\sqrt{7554}}{30}
Multiply 2 times 15.
x=\frac{2\sqrt{7554}-6}{30}
Now solve the equation x=\frac{-6±2\sqrt{7554}}{30} when ± is plus. Add -6 to 2\sqrt{7554}.
x=\frac{\sqrt{7554}}{15}-\frac{1}{5}
Divide -6+2\sqrt{7554} by 30.
x=\frac{-2\sqrt{7554}-6}{30}
Now solve the equation x=\frac{-6±2\sqrt{7554}}{30} when ± is minus. Subtract 2\sqrt{7554} from -6.
x=-\frac{\sqrt{7554}}{15}-\frac{1}{5}
Divide -6-2\sqrt{7554} by 30.
x=\frac{\sqrt{7554}}{15}-\frac{1}{5} x=-\frac{\sqrt{7554}}{15}-\frac{1}{5}
The equation is now solved.
15x^{2}+6x+12=515
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
15x^{2}+6x+12-12=515-12
Subtract 12 from both sides of the equation.
15x^{2}+6x=515-12
Subtracting 12 from itself leaves 0.
15x^{2}+6x=503
Subtract 12 from 515.
\frac{15x^{2}+6x}{15}=\frac{503}{15}
Divide both sides by 15.
x^{2}+\frac{6}{15}x=\frac{503}{15}
Dividing by 15 undoes the multiplication by 15.
x^{2}+\frac{2}{5}x=\frac{503}{15}
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=\frac{503}{15}+\left(\frac{1}{5}\right)^{2}
Divide \frac{2}{5}, the coefficient of the x term, by 2 to get \frac{1}{5}. Then add the square of \frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{503}{15}+\frac{1}{25}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{2518}{75}
Add \frac{503}{15} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{5}\right)^{2}=\frac{2518}{75}
Factor x^{2}+\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{\frac{2518}{75}}
Take the square root of both sides of the equation.
x+\frac{1}{5}=\frac{\sqrt{7554}}{15} x+\frac{1}{5}=-\frac{\sqrt{7554}}{15}
Simplify.
x=\frac{\sqrt{7554}}{15}-\frac{1}{5} x=-\frac{\sqrt{7554}}{15}-\frac{1}{5}
Subtract \frac{1}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}