Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times999999}15\\\underline{\times\phantom{99}746667}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times999999}15\\\underline{\times\phantom{99}746667}\\\phantom{\times99999}105\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 15 with 7. Write the result 105 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}15\\\underline{\times\phantom{99}746667}\\\phantom{\times99999}105\\\phantom{\times99999}90\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 15 with 6. Write the result 90 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}15\\\underline{\times\phantom{99}746667}\\\phantom{\times99999}105\\\phantom{\times99999}90\phantom{9}\\\phantom{\times9999}90\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 15 with 6. Write the result 90 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}15\\\underline{\times\phantom{99}746667}\\\phantom{\times99999}105\\\phantom{\times99999}90\phantom{9}\\\phantom{\times9999}90\phantom{99}\\\phantom{\times999}90\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 15 with 6. Write the result 90 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}15\\\underline{\times\phantom{99}746667}\\\phantom{\times99999}105\\\phantom{\times99999}90\phantom{9}\\\phantom{\times9999}90\phantom{99}\\\phantom{\times999}90\phantom{999}\\\phantom{\times99}60\phantom{9999}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 15 with 4. Write the result 60 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}15\\\underline{\times\phantom{99}746667}\\\phantom{\times99999}105\\\phantom{\times99999}90\phantom{9}\\\phantom{\times9999}90\phantom{99}\\\phantom{\times999}90\phantom{999}\\\phantom{\times99}60\phantom{9999}\\\underline{\phantom{\times}105\phantom{99999}}\\\end{array}
Now multiply the first number with the 6^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 15 with 7. Write the result 105 at the end leaving 5 spaces to the right like this.
\begin{array}{c}\phantom{\times999999}15\\\underline{\times\phantom{99}746667}\\\phantom{\times99999}105\\\phantom{\times99999}90\phantom{9}\\\phantom{\times9999}90\phantom{99}\\\phantom{\times999}90\phantom{999}\\\phantom{\times99}60\phantom{9999}\\\underline{\phantom{\times}105\phantom{99999}}\\\phantom{\times}11200005\end{array}
Now add the intermediate results to get final answer.