Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{h}{15s}\text{, }&h\neq 0\text{ and }s\neq 0\\k\in \mathrm{C}\text{, }&m=0\text{ and }h\neq 0\text{ and }s\neq 0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=15ks\text{, }&s\neq 0\text{ and }k\neq 0\\h\neq 0\text{, }&m=0\text{ and }s\neq 0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{h}{15s}\text{, }&h\neq 0\text{ and }s\neq 0\\k\in \mathrm{R}\text{, }&m=0\text{ and }h\neq 0\text{ and }s\neq 0\end{matrix}\right.
Share
Copied to clipboard
15skm=hm
Multiply both sides of the equation by hs, the least common multiple of h,s.
15kms=hm
Reorder the terms.
15msk=hm
The equation is in standard form.
\frac{15msk}{15ms}=\frac{hm}{15ms}
Divide both sides by 15ms.
k=\frac{hm}{15ms}
Dividing by 15ms undoes the multiplication by 15ms.
k=\frac{h}{15s}
Divide hm by 15ms.
15skm=hm
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by hs, the least common multiple of h,s.
hm=15skm
Swap sides so that all variable terms are on the left hand side.
mh=15kms
The equation is in standard form.
\frac{mh}{m}=\frac{15kms}{m}
Divide both sides by m.
h=\frac{15kms}{m}
Dividing by m undoes the multiplication by m.
h=15ks
Divide 15skm by m.
h=15ks\text{, }h\neq 0
Variable h cannot be equal to 0.
15skm=hm
Multiply both sides of the equation by hs, the least common multiple of h,s.
15kms=hm
Reorder the terms.
15msk=hm
The equation is in standard form.
\frac{15msk}{15ms}=\frac{hm}{15ms}
Divide both sides by 15ms.
k=\frac{hm}{15ms}
Dividing by 15ms undoes the multiplication by 15ms.
k=\frac{h}{15s}
Divide hm by 15ms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}