Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

225=x^{2}+x^{2}
Calculate 15 to the power of 2 and get 225.
225=2x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=225
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{225}{2}
Divide both sides by 2.
x=\frac{15\sqrt{2}}{2} x=-\frac{15\sqrt{2}}{2}
Take the square root of both sides of the equation.
225=x^{2}+x^{2}
Calculate 15 to the power of 2 and get 225.
225=2x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=225
Swap sides so that all variable terms are on the left hand side.
2x^{2}-225=0
Subtract 225 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-225\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and -225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\left(-225\right)}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\left(-225\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{1800}}{2\times 2}
Multiply -8 times -225.
x=\frac{0±30\sqrt{2}}{2\times 2}
Take the square root of 1800.
x=\frac{0±30\sqrt{2}}{4}
Multiply 2 times 2.
x=\frac{15\sqrt{2}}{2}
Now solve the equation x=\frac{0±30\sqrt{2}}{4} when ± is plus.
x=-\frac{15\sqrt{2}}{2}
Now solve the equation x=\frac{0±30\sqrt{2}}{4} when ± is minus.
x=\frac{15\sqrt{2}}{2} x=-\frac{15\sqrt{2}}{2}
The equation is now solved.