Verify
false
Quiz
Arithmetic
5 problems similar to:
15 + 18 \frac { 16 } { 16 + 12 } + 12 = \frac { 24 } { 24 + 32 }
Share
Copied to clipboard
15+18\times \frac{16}{28}+12=\frac{24}{24+32}
Add 16 and 12 to get 28.
15+18\times \frac{4}{7}+12=\frac{24}{24+32}
Reduce the fraction \frac{16}{28} to lowest terms by extracting and canceling out 4.
15+\frac{18\times 4}{7}+12=\frac{24}{24+32}
Express 18\times \frac{4}{7} as a single fraction.
15+\frac{72}{7}+12=\frac{24}{24+32}
Multiply 18 and 4 to get 72.
\frac{105}{7}+\frac{72}{7}+12=\frac{24}{24+32}
Convert 15 to fraction \frac{105}{7}.
\frac{105+72}{7}+12=\frac{24}{24+32}
Since \frac{105}{7} and \frac{72}{7} have the same denominator, add them by adding their numerators.
\frac{177}{7}+12=\frac{24}{24+32}
Add 105 and 72 to get 177.
\frac{177}{7}+\frac{84}{7}=\frac{24}{24+32}
Convert 12 to fraction \frac{84}{7}.
\frac{177+84}{7}=\frac{24}{24+32}
Since \frac{177}{7} and \frac{84}{7} have the same denominator, add them by adding their numerators.
\frac{261}{7}=\frac{24}{24+32}
Add 177 and 84 to get 261.
\frac{261}{7}=\frac{24}{56}
Add 24 and 32 to get 56.
\frac{261}{7}=\frac{3}{7}
Reduce the fraction \frac{24}{56} to lowest terms by extracting and canceling out 8.
\text{false}
Compare \frac{261}{7} and \frac{3}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}