Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-8x^{2}+14x+15
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=14 ab=-8\times 15=-120
Factor the expression by grouping. First, the expression needs to be rewritten as -8x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Calculate the sum for each pair.
a=20 b=-6
The solution is the pair that gives sum 14.
\left(-8x^{2}+20x\right)+\left(-6x+15\right)
Rewrite -8x^{2}+14x+15 as \left(-8x^{2}+20x\right)+\left(-6x+15\right).
-4x\left(2x-5\right)-3\left(2x-5\right)
Factor out -4x in the first and -3 in the second group.
\left(2x-5\right)\left(-4x-3\right)
Factor out common term 2x-5 by using distributive property.
-8x^{2}+14x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}-4\left(-8\right)\times 15}}{2\left(-8\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{196-4\left(-8\right)\times 15}}{2\left(-8\right)}
Square 14.
x=\frac{-14±\sqrt{196+32\times 15}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-14±\sqrt{196+480}}{2\left(-8\right)}
Multiply 32 times 15.
x=\frac{-14±\sqrt{676}}{2\left(-8\right)}
Add 196 to 480.
x=\frac{-14±26}{2\left(-8\right)}
Take the square root of 676.
x=\frac{-14±26}{-16}
Multiply 2 times -8.
x=\frac{12}{-16}
Now solve the equation x=\frac{-14±26}{-16} when ± is plus. Add -14 to 26.
x=-\frac{3}{4}
Reduce the fraction \frac{12}{-16} to lowest terms by extracting and canceling out 4.
x=-\frac{40}{-16}
Now solve the equation x=\frac{-14±26}{-16} when ± is minus. Subtract 26 from -14.
x=\frac{5}{2}
Reduce the fraction \frac{-40}{-16} to lowest terms by extracting and canceling out 8.
-8x^{2}+14x+15=-8\left(x-\left(-\frac{3}{4}\right)\right)\left(x-\frac{5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{4} for x_{1} and \frac{5}{2} for x_{2}.
-8x^{2}+14x+15=-8\left(x+\frac{3}{4}\right)\left(x-\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-8x^{2}+14x+15=-8\times \frac{-4x-3}{-4}\left(x-\frac{5}{2}\right)
Add \frac{3}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-8x^{2}+14x+15=-8\times \frac{-4x-3}{-4}\times \frac{-2x+5}{-2}
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-8x^{2}+14x+15=-8\times \frac{\left(-4x-3\right)\left(-2x+5\right)}{-4\left(-2\right)}
Multiply \frac{-4x-3}{-4} times \frac{-2x+5}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-8x^{2}+14x+15=-8\times \frac{\left(-4x-3\right)\left(-2x+5\right)}{8}
Multiply -4 times -2.
-8x^{2}+14x+15=-\left(-4x-3\right)\left(-2x+5\right)
Cancel out 8, the greatest common factor in -8 and 8.