Evaluate
\frac{148001}{85}\approx 1741.188235294
Factor
\frac{7 \cdot 21143}{5 \cdot 17} = 1741\frac{16}{85} = 1741.1882352941177
Share
Copied to clipboard
\begin{array}{l}\phantom{85)}\phantom{1}\\85\overline{)148001}\\\end{array}
Use the 1^{st} digit 1 from dividend 148001
\begin{array}{l}\phantom{85)}0\phantom{2}\\85\overline{)148001}\\\end{array}
Since 1 is less than 85, use the next digit 4 from dividend 148001 and add 0 to the quotient
\begin{array}{l}\phantom{85)}0\phantom{3}\\85\overline{)148001}\\\end{array}
Use the 2^{nd} digit 4 from dividend 148001
\begin{array}{l}\phantom{85)}00\phantom{4}\\85\overline{)148001}\\\end{array}
Since 14 is less than 85, use the next digit 8 from dividend 148001 and add 0 to the quotient
\begin{array}{l}\phantom{85)}00\phantom{5}\\85\overline{)148001}\\\end{array}
Use the 3^{rd} digit 8 from dividend 148001
\begin{array}{l}\phantom{85)}001\phantom{6}\\85\overline{)148001}\\\phantom{85)}\underline{\phantom{9}85\phantom{999}}\\\phantom{85)9}63\\\end{array}
Find closest multiple of 85 to 148. We see that 1 \times 85 = 85 is the nearest. Now subtract 85 from 148 to get reminder 63. Add 1 to quotient.
\begin{array}{l}\phantom{85)}001\phantom{7}\\85\overline{)148001}\\\phantom{85)}\underline{\phantom{9}85\phantom{999}}\\\phantom{85)9}630\\\end{array}
Use the 4^{th} digit 0 from dividend 148001
\begin{array}{l}\phantom{85)}0017\phantom{8}\\85\overline{)148001}\\\phantom{85)}\underline{\phantom{9}85\phantom{999}}\\\phantom{85)9}630\\\phantom{85)}\underline{\phantom{9}595\phantom{99}}\\\phantom{85)99}35\\\end{array}
Find closest multiple of 85 to 630. We see that 7 \times 85 = 595 is the nearest. Now subtract 595 from 630 to get reminder 35. Add 7 to quotient.
\begin{array}{l}\phantom{85)}0017\phantom{9}\\85\overline{)148001}\\\phantom{85)}\underline{\phantom{9}85\phantom{999}}\\\phantom{85)9}630\\\phantom{85)}\underline{\phantom{9}595\phantom{99}}\\\phantom{85)99}350\\\end{array}
Use the 5^{th} digit 0 from dividend 148001
\begin{array}{l}\phantom{85)}00174\phantom{10}\\85\overline{)148001}\\\phantom{85)}\underline{\phantom{9}85\phantom{999}}\\\phantom{85)9}630\\\phantom{85)}\underline{\phantom{9}595\phantom{99}}\\\phantom{85)99}350\\\phantom{85)}\underline{\phantom{99}340\phantom{9}}\\\phantom{85)999}10\\\end{array}
Find closest multiple of 85 to 350. We see that 4 \times 85 = 340 is the nearest. Now subtract 340 from 350 to get reminder 10. Add 4 to quotient.
\begin{array}{l}\phantom{85)}00174\phantom{11}\\85\overline{)148001}\\\phantom{85)}\underline{\phantom{9}85\phantom{999}}\\\phantom{85)9}630\\\phantom{85)}\underline{\phantom{9}595\phantom{99}}\\\phantom{85)99}350\\\phantom{85)}\underline{\phantom{99}340\phantom{9}}\\\phantom{85)999}101\\\end{array}
Use the 6^{th} digit 1 from dividend 148001
\begin{array}{l}\phantom{85)}001741\phantom{12}\\85\overline{)148001}\\\phantom{85)}\underline{\phantom{9}85\phantom{999}}\\\phantom{85)9}630\\\phantom{85)}\underline{\phantom{9}595\phantom{99}}\\\phantom{85)99}350\\\phantom{85)}\underline{\phantom{99}340\phantom{9}}\\\phantom{85)999}101\\\phantom{85)}\underline{\phantom{9999}85\phantom{}}\\\phantom{85)9999}16\\\end{array}
Find closest multiple of 85 to 101. We see that 1 \times 85 = 85 is the nearest. Now subtract 85 from 101 to get reminder 16. Add 1 to quotient.
\text{Quotient: }1741 \text{Reminder: }16
Since 16 is less than 85, stop the division. The reminder is 16. The topmost line 001741 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1741.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}