Solve for x (complex solution)
x=\frac{-1+2\sqrt{257}i}{147}\approx -0.006802721+0.218111831i
x=\frac{-2\sqrt{257}i-1}{147}\approx -0.006802721-0.218111831i
Graph
Share
Copied to clipboard
147x^{2}+2x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 147\times 7}}{2\times 147}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 147 for a, 2 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 147\times 7}}{2\times 147}
Square 2.
x=\frac{-2±\sqrt{4-588\times 7}}{2\times 147}
Multiply -4 times 147.
x=\frac{-2±\sqrt{4-4116}}{2\times 147}
Multiply -588 times 7.
x=\frac{-2±\sqrt{-4112}}{2\times 147}
Add 4 to -4116.
x=\frac{-2±4\sqrt{257}i}{2\times 147}
Take the square root of -4112.
x=\frac{-2±4\sqrt{257}i}{294}
Multiply 2 times 147.
x=\frac{-2+4\sqrt{257}i}{294}
Now solve the equation x=\frac{-2±4\sqrt{257}i}{294} when ± is plus. Add -2 to 4i\sqrt{257}.
x=\frac{-1+2\sqrt{257}i}{147}
Divide -2+4i\sqrt{257} by 294.
x=\frac{-4\sqrt{257}i-2}{294}
Now solve the equation x=\frac{-2±4\sqrt{257}i}{294} when ± is minus. Subtract 4i\sqrt{257} from -2.
x=\frac{-2\sqrt{257}i-1}{147}
Divide -2-4i\sqrt{257} by 294.
x=\frac{-1+2\sqrt{257}i}{147} x=\frac{-2\sqrt{257}i-1}{147}
The equation is now solved.
147x^{2}+2x+7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
147x^{2}+2x+7-7=-7
Subtract 7 from both sides of the equation.
147x^{2}+2x=-7
Subtracting 7 from itself leaves 0.
\frac{147x^{2}+2x}{147}=-\frac{7}{147}
Divide both sides by 147.
x^{2}+\frac{2}{147}x=-\frac{7}{147}
Dividing by 147 undoes the multiplication by 147.
x^{2}+\frac{2}{147}x=-\frac{1}{21}
Reduce the fraction \frac{-7}{147} to lowest terms by extracting and canceling out 7.
x^{2}+\frac{2}{147}x+\left(\frac{1}{147}\right)^{2}=-\frac{1}{21}+\left(\frac{1}{147}\right)^{2}
Divide \frac{2}{147}, the coefficient of the x term, by 2 to get \frac{1}{147}. Then add the square of \frac{1}{147} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{147}x+\frac{1}{21609}=-\frac{1}{21}+\frac{1}{21609}
Square \frac{1}{147} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{147}x+\frac{1}{21609}=-\frac{1028}{21609}
Add -\frac{1}{21} to \frac{1}{21609} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{147}\right)^{2}=-\frac{1028}{21609}
Factor x^{2}+\frac{2}{147}x+\frac{1}{21609}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{147}\right)^{2}}=\sqrt{-\frac{1028}{21609}}
Take the square root of both sides of the equation.
x+\frac{1}{147}=\frac{2\sqrt{257}i}{147} x+\frac{1}{147}=-\frac{2\sqrt{257}i}{147}
Simplify.
x=\frac{-1+2\sqrt{257}i}{147} x=\frac{-2\sqrt{257}i-1}{147}
Subtract \frac{1}{147} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}