Evaluate
\frac{49}{6}\approx 8.166666667
Factor
\frac{7 ^ {2}}{2 \cdot 3} = 8\frac{1}{6} = 8.166666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)147}\\\end{array}
Use the 1^{st} digit 1 from dividend 147
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)147}\\\end{array}
Since 1 is less than 18, use the next digit 4 from dividend 147 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)147}\\\end{array}
Use the 2^{nd} digit 4 from dividend 147
\begin{array}{l}\phantom{18)}00\phantom{4}\\18\overline{)147}\\\end{array}
Since 14 is less than 18, use the next digit 7 from dividend 147 and add 0 to the quotient
\begin{array}{l}\phantom{18)}00\phantom{5}\\18\overline{)147}\\\end{array}
Use the 3^{rd} digit 7 from dividend 147
\begin{array}{l}\phantom{18)}008\phantom{6}\\18\overline{)147}\\\phantom{18)}\underline{\phantom{}144\phantom{}}\\\phantom{18)99}3\\\end{array}
Find closest multiple of 18 to 147. We see that 8 \times 18 = 144 is the nearest. Now subtract 144 from 147 to get reminder 3. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }3
Since 3 is less than 18, stop the division. The reminder is 3. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}