Evaluate
\frac{147}{17}\approx 8.647058824
Factor
\frac{3 \cdot 7 ^ {2}}{17} = 8\frac{11}{17} = 8.647058823529411
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)147}\\\end{array}
Use the 1^{st} digit 1 from dividend 147
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)147}\\\end{array}
Since 1 is less than 17, use the next digit 4 from dividend 147 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)147}\\\end{array}
Use the 2^{nd} digit 4 from dividend 147
\begin{array}{l}\phantom{17)}00\phantom{4}\\17\overline{)147}\\\end{array}
Since 14 is less than 17, use the next digit 7 from dividend 147 and add 0 to the quotient
\begin{array}{l}\phantom{17)}00\phantom{5}\\17\overline{)147}\\\end{array}
Use the 3^{rd} digit 7 from dividend 147
\begin{array}{l}\phantom{17)}008\phantom{6}\\17\overline{)147}\\\phantom{17)}\underline{\phantom{}136\phantom{}}\\\phantom{17)9}11\\\end{array}
Find closest multiple of 17 to 147. We see that 8 \times 17 = 136 is the nearest. Now subtract 136 from 147 to get reminder 11. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }11
Since 11 is less than 17, stop the division. The reminder is 11. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}