Evaluate
\frac{487}{300}\approx 1.623333333
Factor
\frac{487}{2 ^ {2} \cdot 3 \cdot 5 ^ {2}} = 1\frac{187}{300} = 1.6233333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{900)}\phantom{1}\\900\overline{)1461}\\\end{array}
Use the 1^{st} digit 1 from dividend 1461
\begin{array}{l}\phantom{900)}0\phantom{2}\\900\overline{)1461}\\\end{array}
Since 1 is less than 900, use the next digit 4 from dividend 1461 and add 0 to the quotient
\begin{array}{l}\phantom{900)}0\phantom{3}\\900\overline{)1461}\\\end{array}
Use the 2^{nd} digit 4 from dividend 1461
\begin{array}{l}\phantom{900)}00\phantom{4}\\900\overline{)1461}\\\end{array}
Since 14 is less than 900, use the next digit 6 from dividend 1461 and add 0 to the quotient
\begin{array}{l}\phantom{900)}00\phantom{5}\\900\overline{)1461}\\\end{array}
Use the 3^{rd} digit 6 from dividend 1461
\begin{array}{l}\phantom{900)}000\phantom{6}\\900\overline{)1461}\\\end{array}
Since 146 is less than 900, use the next digit 1 from dividend 1461 and add 0 to the quotient
\begin{array}{l}\phantom{900)}000\phantom{7}\\900\overline{)1461}\\\end{array}
Use the 4^{th} digit 1 from dividend 1461
\begin{array}{l}\phantom{900)}0001\phantom{8}\\900\overline{)1461}\\\phantom{900)}\underline{\phantom{9}900\phantom{}}\\\phantom{900)9}561\\\end{array}
Find closest multiple of 900 to 1461. We see that 1 \times 900 = 900 is the nearest. Now subtract 900 from 1461 to get reminder 561. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }561
Since 561 is less than 900, stop the division. The reminder is 561. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}