Evaluate
\frac{73}{9}\approx 8.111111111
Factor
\frac{73}{3 ^ {2}} = 8\frac{1}{9} = 8.11111111111111
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)1460}\\\end{array}
Use the 1^{st} digit 1 from dividend 1460
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)1460}\\\end{array}
Since 1 is less than 180, use the next digit 4 from dividend 1460 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)1460}\\\end{array}
Use the 2^{nd} digit 4 from dividend 1460
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)1460}\\\end{array}
Since 14 is less than 180, use the next digit 6 from dividend 1460 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)1460}\\\end{array}
Use the 3^{rd} digit 6 from dividend 1460
\begin{array}{l}\phantom{180)}000\phantom{6}\\180\overline{)1460}\\\end{array}
Since 146 is less than 180, use the next digit 0 from dividend 1460 and add 0 to the quotient
\begin{array}{l}\phantom{180)}000\phantom{7}\\180\overline{)1460}\\\end{array}
Use the 4^{th} digit 0 from dividend 1460
\begin{array}{l}\phantom{180)}0008\phantom{8}\\180\overline{)1460}\\\phantom{180)}\underline{\phantom{}1440\phantom{}}\\\phantom{180)99}20\\\end{array}
Find closest multiple of 180 to 1460. We see that 8 \times 180 = 1440 is the nearest. Now subtract 1440 from 1460 to get reminder 20. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }20
Since 20 is less than 180, stop the division. The reminder is 20. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}