Solve for x (complex solution)
x=\frac{-\sqrt{28289}i-221}{9}\approx -24.555555556-18.688149014i
x=\frac{-221+\sqrt{28289}i}{9}\approx -24.555555556+18.688149014i
Graph
Share
Copied to clipboard
144=-10-100-40x-4x^{2}-15-\left(625+50x+x^{2}\right)+68-\left(7744+352x+4x^{2}\right)
To find the opposite of 100+40x+4x^{2}, find the opposite of each term.
144=-110-40x-4x^{2}-15-\left(625+50x+x^{2}\right)+68-\left(7744+352x+4x^{2}\right)
Subtract 100 from -10 to get -110.
144=-125-40x-4x^{2}-\left(625+50x+x^{2}\right)+68-\left(7744+352x+4x^{2}\right)
Subtract 15 from -110 to get -125.
144=-125-40x-4x^{2}-625-50x-x^{2}+68-\left(7744+352x+4x^{2}\right)
To find the opposite of 625+50x+x^{2}, find the opposite of each term.
144=-750-40x-4x^{2}-50x-x^{2}+68-\left(7744+352x+4x^{2}\right)
Subtract 625 from -125 to get -750.
144=-750-90x-4x^{2}-x^{2}+68-\left(7744+352x+4x^{2}\right)
Combine -40x and -50x to get -90x.
144=-750-90x-5x^{2}+68-\left(7744+352x+4x^{2}\right)
Combine -4x^{2} and -x^{2} to get -5x^{2}.
144=-682-90x-5x^{2}-\left(7744+352x+4x^{2}\right)
Add -750 and 68 to get -682.
144=-682-90x-5x^{2}-7744-352x-4x^{2}
To find the opposite of 7744+352x+4x^{2}, find the opposite of each term.
144=-8426-90x-5x^{2}-352x-4x^{2}
Subtract 7744 from -682 to get -8426.
144=-8426-442x-5x^{2}-4x^{2}
Combine -90x and -352x to get -442x.
144=-8426-442x-9x^{2}
Combine -5x^{2} and -4x^{2} to get -9x^{2}.
-8426-442x-9x^{2}=144
Swap sides so that all variable terms are on the left hand side.
-8426-442x-9x^{2}-144=0
Subtract 144 from both sides.
-8570-442x-9x^{2}=0
Subtract 144 from -8426 to get -8570.
-9x^{2}-442x-8570=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-442\right)±\sqrt{\left(-442\right)^{2}-4\left(-9\right)\left(-8570\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -442 for b, and -8570 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-442\right)±\sqrt{195364-4\left(-9\right)\left(-8570\right)}}{2\left(-9\right)}
Square -442.
x=\frac{-\left(-442\right)±\sqrt{195364+36\left(-8570\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-442\right)±\sqrt{195364-308520}}{2\left(-9\right)}
Multiply 36 times -8570.
x=\frac{-\left(-442\right)±\sqrt{-113156}}{2\left(-9\right)}
Add 195364 to -308520.
x=\frac{-\left(-442\right)±2\sqrt{28289}i}{2\left(-9\right)}
Take the square root of -113156.
x=\frac{442±2\sqrt{28289}i}{2\left(-9\right)}
The opposite of -442 is 442.
x=\frac{442±2\sqrt{28289}i}{-18}
Multiply 2 times -9.
x=\frac{442+2\sqrt{28289}i}{-18}
Now solve the equation x=\frac{442±2\sqrt{28289}i}{-18} when ± is plus. Add 442 to 2i\sqrt{28289}.
x=\frac{-\sqrt{28289}i-221}{9}
Divide 442+2i\sqrt{28289} by -18.
x=\frac{-2\sqrt{28289}i+442}{-18}
Now solve the equation x=\frac{442±2\sqrt{28289}i}{-18} when ± is minus. Subtract 2i\sqrt{28289} from 442.
x=\frac{-221+\sqrt{28289}i}{9}
Divide 442-2i\sqrt{28289} by -18.
x=\frac{-\sqrt{28289}i-221}{9} x=\frac{-221+\sqrt{28289}i}{9}
The equation is now solved.
144=-10-100-40x-4x^{2}-15-\left(625+50x+x^{2}\right)+68-\left(7744+352x+4x^{2}\right)
To find the opposite of 100+40x+4x^{2}, find the opposite of each term.
144=-110-40x-4x^{2}-15-\left(625+50x+x^{2}\right)+68-\left(7744+352x+4x^{2}\right)
Subtract 100 from -10 to get -110.
144=-125-40x-4x^{2}-\left(625+50x+x^{2}\right)+68-\left(7744+352x+4x^{2}\right)
Subtract 15 from -110 to get -125.
144=-125-40x-4x^{2}-625-50x-x^{2}+68-\left(7744+352x+4x^{2}\right)
To find the opposite of 625+50x+x^{2}, find the opposite of each term.
144=-750-40x-4x^{2}-50x-x^{2}+68-\left(7744+352x+4x^{2}\right)
Subtract 625 from -125 to get -750.
144=-750-90x-4x^{2}-x^{2}+68-\left(7744+352x+4x^{2}\right)
Combine -40x and -50x to get -90x.
144=-750-90x-5x^{2}+68-\left(7744+352x+4x^{2}\right)
Combine -4x^{2} and -x^{2} to get -5x^{2}.
144=-682-90x-5x^{2}-\left(7744+352x+4x^{2}\right)
Add -750 and 68 to get -682.
144=-682-90x-5x^{2}-7744-352x-4x^{2}
To find the opposite of 7744+352x+4x^{2}, find the opposite of each term.
144=-8426-90x-5x^{2}-352x-4x^{2}
Subtract 7744 from -682 to get -8426.
144=-8426-442x-5x^{2}-4x^{2}
Combine -90x and -352x to get -442x.
144=-8426-442x-9x^{2}
Combine -5x^{2} and -4x^{2} to get -9x^{2}.
-8426-442x-9x^{2}=144
Swap sides so that all variable terms are on the left hand side.
-442x-9x^{2}=144+8426
Add 8426 to both sides.
-442x-9x^{2}=8570
Add 144 and 8426 to get 8570.
-9x^{2}-442x=8570
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}-442x}{-9}=\frac{8570}{-9}
Divide both sides by -9.
x^{2}+\left(-\frac{442}{-9}\right)x=\frac{8570}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}+\frac{442}{9}x=\frac{8570}{-9}
Divide -442 by -9.
x^{2}+\frac{442}{9}x=-\frac{8570}{9}
Divide 8570 by -9.
x^{2}+\frac{442}{9}x+\left(\frac{221}{9}\right)^{2}=-\frac{8570}{9}+\left(\frac{221}{9}\right)^{2}
Divide \frac{442}{9}, the coefficient of the x term, by 2 to get \frac{221}{9}. Then add the square of \frac{221}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{442}{9}x+\frac{48841}{81}=-\frac{8570}{9}+\frac{48841}{81}
Square \frac{221}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{442}{9}x+\frac{48841}{81}=-\frac{28289}{81}
Add -\frac{8570}{9} to \frac{48841}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{221}{9}\right)^{2}=-\frac{28289}{81}
Factor x^{2}+\frac{442}{9}x+\frac{48841}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{221}{9}\right)^{2}}=\sqrt{-\frac{28289}{81}}
Take the square root of both sides of the equation.
x+\frac{221}{9}=\frac{\sqrt{28289}i}{9} x+\frac{221}{9}=-\frac{\sqrt{28289}i}{9}
Simplify.
x=\frac{-221+\sqrt{28289}i}{9} x=\frac{-\sqrt{28289}i-221}{9}
Subtract \frac{221}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}