Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

144y^{2}=30+5
Add 5 to both sides.
144y^{2}=35
Add 30 and 5 to get 35.
y^{2}=\frac{35}{144}
Divide both sides by 144.
y=\frac{\sqrt{35}}{12} y=-\frac{\sqrt{35}}{12}
Take the square root of both sides of the equation.
144y^{2}-5-30=0
Subtract 30 from both sides.
144y^{2}-35=0
Subtract 30 from -5 to get -35.
y=\frac{0±\sqrt{0^{2}-4\times 144\left(-35\right)}}{2\times 144}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 144 for a, 0 for b, and -35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 144\left(-35\right)}}{2\times 144}
Square 0.
y=\frac{0±\sqrt{-576\left(-35\right)}}{2\times 144}
Multiply -4 times 144.
y=\frac{0±\sqrt{20160}}{2\times 144}
Multiply -576 times -35.
y=\frac{0±24\sqrt{35}}{2\times 144}
Take the square root of 20160.
y=\frac{0±24\sqrt{35}}{288}
Multiply 2 times 144.
y=\frac{\sqrt{35}}{12}
Now solve the equation y=\frac{0±24\sqrt{35}}{288} when ± is plus.
y=-\frac{\sqrt{35}}{12}
Now solve the equation y=\frac{0±24\sqrt{35}}{288} when ± is minus.
y=\frac{\sqrt{35}}{12} y=-\frac{\sqrt{35}}{12}
The equation is now solved.