Solve for y
y=\frac{\sqrt{35}}{12}\approx 0.493006649
y=-\frac{\sqrt{35}}{12}\approx -0.493006649
Graph
Share
Copied to clipboard
144y^{2}=30+5
Add 5 to both sides.
144y^{2}=35
Add 30 and 5 to get 35.
y^{2}=\frac{35}{144}
Divide both sides by 144.
y=\frac{\sqrt{35}}{12} y=-\frac{\sqrt{35}}{12}
Take the square root of both sides of the equation.
144y^{2}-5-30=0
Subtract 30 from both sides.
144y^{2}-35=0
Subtract 30 from -5 to get -35.
y=\frac{0±\sqrt{0^{2}-4\times 144\left(-35\right)}}{2\times 144}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 144 for a, 0 for b, and -35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 144\left(-35\right)}}{2\times 144}
Square 0.
y=\frac{0±\sqrt{-576\left(-35\right)}}{2\times 144}
Multiply -4 times 144.
y=\frac{0±\sqrt{20160}}{2\times 144}
Multiply -576 times -35.
y=\frac{0±24\sqrt{35}}{2\times 144}
Take the square root of 20160.
y=\frac{0±24\sqrt{35}}{288}
Multiply 2 times 144.
y=\frac{\sqrt{35}}{12}
Now solve the equation y=\frac{0±24\sqrt{35}}{288} when ± is plus.
y=-\frac{\sqrt{35}}{12}
Now solve the equation y=\frac{0±24\sqrt{35}}{288} when ± is minus.
y=\frac{\sqrt{35}}{12} y=-\frac{\sqrt{35}}{12}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}