Evaluate
\frac{142381}{33}\approx 4314.575757576
Factor
\frac{142381}{3 \cdot 11} = 4314\frac{19}{33} = 4314.575757575758
Share
Copied to clipboard
\begin{array}{l}\phantom{33)}\phantom{1}\\33\overline{)142381}\\\end{array}
Use the 1^{st} digit 1 from dividend 142381
\begin{array}{l}\phantom{33)}0\phantom{2}\\33\overline{)142381}\\\end{array}
Since 1 is less than 33, use the next digit 4 from dividend 142381 and add 0 to the quotient
\begin{array}{l}\phantom{33)}0\phantom{3}\\33\overline{)142381}\\\end{array}
Use the 2^{nd} digit 4 from dividend 142381
\begin{array}{l}\phantom{33)}00\phantom{4}\\33\overline{)142381}\\\end{array}
Since 14 is less than 33, use the next digit 2 from dividend 142381 and add 0 to the quotient
\begin{array}{l}\phantom{33)}00\phantom{5}\\33\overline{)142381}\\\end{array}
Use the 3^{rd} digit 2 from dividend 142381
\begin{array}{l}\phantom{33)}004\phantom{6}\\33\overline{)142381}\\\phantom{33)}\underline{\phantom{}132\phantom{999}}\\\phantom{33)9}10\\\end{array}
Find closest multiple of 33 to 142. We see that 4 \times 33 = 132 is the nearest. Now subtract 132 from 142 to get reminder 10. Add 4 to quotient.
\begin{array}{l}\phantom{33)}004\phantom{7}\\33\overline{)142381}\\\phantom{33)}\underline{\phantom{}132\phantom{999}}\\\phantom{33)9}103\\\end{array}
Use the 4^{th} digit 3 from dividend 142381
\begin{array}{l}\phantom{33)}0043\phantom{8}\\33\overline{)142381}\\\phantom{33)}\underline{\phantom{}132\phantom{999}}\\\phantom{33)9}103\\\phantom{33)}\underline{\phantom{99}99\phantom{99}}\\\phantom{33)999}4\\\end{array}
Find closest multiple of 33 to 103. We see that 3 \times 33 = 99 is the nearest. Now subtract 99 from 103 to get reminder 4. Add 3 to quotient.
\begin{array}{l}\phantom{33)}0043\phantom{9}\\33\overline{)142381}\\\phantom{33)}\underline{\phantom{}132\phantom{999}}\\\phantom{33)9}103\\\phantom{33)}\underline{\phantom{99}99\phantom{99}}\\\phantom{33)999}48\\\end{array}
Use the 5^{th} digit 8 from dividend 142381
\begin{array}{l}\phantom{33)}00431\phantom{10}\\33\overline{)142381}\\\phantom{33)}\underline{\phantom{}132\phantom{999}}\\\phantom{33)9}103\\\phantom{33)}\underline{\phantom{99}99\phantom{99}}\\\phantom{33)999}48\\\phantom{33)}\underline{\phantom{999}33\phantom{9}}\\\phantom{33)999}15\\\end{array}
Find closest multiple of 33 to 48. We see that 1 \times 33 = 33 is the nearest. Now subtract 33 from 48 to get reminder 15. Add 1 to quotient.
\begin{array}{l}\phantom{33)}00431\phantom{11}\\33\overline{)142381}\\\phantom{33)}\underline{\phantom{}132\phantom{999}}\\\phantom{33)9}103\\\phantom{33)}\underline{\phantom{99}99\phantom{99}}\\\phantom{33)999}48\\\phantom{33)}\underline{\phantom{999}33\phantom{9}}\\\phantom{33)999}151\\\end{array}
Use the 6^{th} digit 1 from dividend 142381
\begin{array}{l}\phantom{33)}004314\phantom{12}\\33\overline{)142381}\\\phantom{33)}\underline{\phantom{}132\phantom{999}}\\\phantom{33)9}103\\\phantom{33)}\underline{\phantom{99}99\phantom{99}}\\\phantom{33)999}48\\\phantom{33)}\underline{\phantom{999}33\phantom{9}}\\\phantom{33)999}151\\\phantom{33)}\underline{\phantom{999}132\phantom{}}\\\phantom{33)9999}19\\\end{array}
Find closest multiple of 33 to 151. We see that 4 \times 33 = 132 is the nearest. Now subtract 132 from 151 to get reminder 19. Add 4 to quotient.
\text{Quotient: }4314 \text{Reminder: }19
Since 19 is less than 33, stop the division. The reminder is 19. The topmost line 004314 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4314.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}