Solve for x
x=-\frac{419546463\sqrt{15}}{2564875}+\frac{170662968}{102595}\approx 1029.944046334
Graph
Share
Copied to clipboard
1422.1914-1.475\times \frac{x\sqrt{15}}{\left(\sqrt{15}\right)^{2}}=x
Rationalize the denominator of \frac{x}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
1422.1914-1.475\times \frac{x\sqrt{15}}{15}=x
The square of \sqrt{15} is 15.
1422.1914-1.475\times \frac{x\sqrt{15}}{15}-x=0
Subtract x from both sides.
15\left(1422.1914-1.475\times \frac{x\sqrt{15}}{15}\right)-15x=0
Multiply both sides of the equation by 15.
225\left(1422.1914-1.475\times \frac{x\sqrt{15}}{15}\right)-225x=0
Multiply both sides of the equation by 15.
319993.065-331.875\times \frac{x\sqrt{15}}{15}-225x=0
Use the distributive property to multiply 225 by 1422.1914-1.475\times \frac{x\sqrt{15}}{15}.
-331.875\times \frac{x\sqrt{15}}{15}-225x=-319993.065
Subtract 319993.065 from both sides. Anything subtracted from zero gives its negation.
-331.875x\sqrt{15}-3375x=-4799895.975
Multiply both sides of the equation by 15.
-331.875\sqrt{15}x-3375x=-4799895.975
Reorder the terms.
\left(-331.875\sqrt{15}-3375\right)x=-4799895.975
Combine all terms containing x.
\left(-\frac{2655\sqrt{15}}{8}-3375\right)x=-4799895.975
The equation is in standard form.
\frac{\left(-\frac{2655\sqrt{15}}{8}-3375\right)x}{-\frac{2655\sqrt{15}}{8}-3375}=-\frac{4799895.975}{-\frac{2655\sqrt{15}}{8}-3375}
Divide both sides by -331.875\sqrt{15}-3375.
x=-\frac{4799895.975}{-\frac{2655\sqrt{15}}{8}-3375}
Dividing by -331.875\sqrt{15}-3375 undoes the multiplication by -331.875\sqrt{15}-3375.
x=-\frac{419546463\sqrt{15}}{2564875}+\frac{170662968}{102595}
Divide -4799895.975 by -331.875\sqrt{15}-3375.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}