Evaluate
\frac{703}{118}\approx 5.957627119
Factor
\frac{19 \cdot 37}{2 \cdot 59} = 5\frac{113}{118} = 5.9576271186440675
Share
Copied to clipboard
\begin{array}{l}\phantom{236)}\phantom{1}\\236\overline{)1406}\\\end{array}
Use the 1^{st} digit 1 from dividend 1406
\begin{array}{l}\phantom{236)}0\phantom{2}\\236\overline{)1406}\\\end{array}
Since 1 is less than 236, use the next digit 4 from dividend 1406 and add 0 to the quotient
\begin{array}{l}\phantom{236)}0\phantom{3}\\236\overline{)1406}\\\end{array}
Use the 2^{nd} digit 4 from dividend 1406
\begin{array}{l}\phantom{236)}00\phantom{4}\\236\overline{)1406}\\\end{array}
Since 14 is less than 236, use the next digit 0 from dividend 1406 and add 0 to the quotient
\begin{array}{l}\phantom{236)}00\phantom{5}\\236\overline{)1406}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1406
\begin{array}{l}\phantom{236)}000\phantom{6}\\236\overline{)1406}\\\end{array}
Since 140 is less than 236, use the next digit 6 from dividend 1406 and add 0 to the quotient
\begin{array}{l}\phantom{236)}000\phantom{7}\\236\overline{)1406}\\\end{array}
Use the 4^{th} digit 6 from dividend 1406
\begin{array}{l}\phantom{236)}0005\phantom{8}\\236\overline{)1406}\\\phantom{236)}\underline{\phantom{}1180\phantom{}}\\\phantom{236)9}226\\\end{array}
Find closest multiple of 236 to 1406. We see that 5 \times 236 = 1180 is the nearest. Now subtract 1180 from 1406 to get reminder 226. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }226
Since 226 is less than 236, stop the division. The reminder is 226. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}