Evaluate
\frac{70000}{11}\approx 6363.636363636
Factor
\frac{2 ^ {4} \cdot 5 ^ {4} \cdot 7}{11} = 6363\frac{7}{11} = 6363.636363636364
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)140000}\\\end{array}
Use the 1^{st} digit 1 from dividend 140000
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)140000}\\\end{array}
Since 1 is less than 22, use the next digit 4 from dividend 140000 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)140000}\\\end{array}
Use the 2^{nd} digit 4 from dividend 140000
\begin{array}{l}\phantom{22)}00\phantom{4}\\22\overline{)140000}\\\end{array}
Since 14 is less than 22, use the next digit 0 from dividend 140000 and add 0 to the quotient
\begin{array}{l}\phantom{22)}00\phantom{5}\\22\overline{)140000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 140000
\begin{array}{l}\phantom{22)}006\phantom{6}\\22\overline{)140000}\\\phantom{22)}\underline{\phantom{}132\phantom{999}}\\\phantom{22)99}8\\\end{array}
Find closest multiple of 22 to 140. We see that 6 \times 22 = 132 is the nearest. Now subtract 132 from 140 to get reminder 8. Add 6 to quotient.
\begin{array}{l}\phantom{22)}006\phantom{7}\\22\overline{)140000}\\\phantom{22)}\underline{\phantom{}132\phantom{999}}\\\phantom{22)99}80\\\end{array}
Use the 4^{th} digit 0 from dividend 140000
\begin{array}{l}\phantom{22)}0063\phantom{8}\\22\overline{)140000}\\\phantom{22)}\underline{\phantom{}132\phantom{999}}\\\phantom{22)99}80\\\phantom{22)}\underline{\phantom{99}66\phantom{99}}\\\phantom{22)99}14\\\end{array}
Find closest multiple of 22 to 80. We see that 3 \times 22 = 66 is the nearest. Now subtract 66 from 80 to get reminder 14. Add 3 to quotient.
\begin{array}{l}\phantom{22)}0063\phantom{9}\\22\overline{)140000}\\\phantom{22)}\underline{\phantom{}132\phantom{999}}\\\phantom{22)99}80\\\phantom{22)}\underline{\phantom{99}66\phantom{99}}\\\phantom{22)99}140\\\end{array}
Use the 5^{th} digit 0 from dividend 140000
\begin{array}{l}\phantom{22)}00636\phantom{10}\\22\overline{)140000}\\\phantom{22)}\underline{\phantom{}132\phantom{999}}\\\phantom{22)99}80\\\phantom{22)}\underline{\phantom{99}66\phantom{99}}\\\phantom{22)99}140\\\phantom{22)}\underline{\phantom{99}132\phantom{9}}\\\phantom{22)9999}8\\\end{array}
Find closest multiple of 22 to 140. We see that 6 \times 22 = 132 is the nearest. Now subtract 132 from 140 to get reminder 8. Add 6 to quotient.
\begin{array}{l}\phantom{22)}00636\phantom{11}\\22\overline{)140000}\\\phantom{22)}\underline{\phantom{}132\phantom{999}}\\\phantom{22)99}80\\\phantom{22)}\underline{\phantom{99}66\phantom{99}}\\\phantom{22)99}140\\\phantom{22)}\underline{\phantom{99}132\phantom{9}}\\\phantom{22)9999}80\\\end{array}
Use the 6^{th} digit 0 from dividend 140000
\begin{array}{l}\phantom{22)}006363\phantom{12}\\22\overline{)140000}\\\phantom{22)}\underline{\phantom{}132\phantom{999}}\\\phantom{22)99}80\\\phantom{22)}\underline{\phantom{99}66\phantom{99}}\\\phantom{22)99}140\\\phantom{22)}\underline{\phantom{99}132\phantom{9}}\\\phantom{22)9999}80\\\phantom{22)}\underline{\phantom{9999}66\phantom{}}\\\phantom{22)9999}14\\\end{array}
Find closest multiple of 22 to 80. We see that 3 \times 22 = 66 is the nearest. Now subtract 66 from 80 to get reminder 14. Add 3 to quotient.
\text{Quotient: }6363 \text{Reminder: }14
Since 14 is less than 22, stop the division. The reminder is 14. The topmost line 006363 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6363.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}