Solve for T
T = \frac{58400}{171} = 341\frac{89}{171} \approx 341.520467836
Share
Copied to clipboard
\frac{140}{19}=1+45\times 10^{-3}\left(T-200\right)
Divide both sides by 19.
\frac{140}{19}=1+45\times \frac{1}{1000}\left(T-200\right)
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{140}{19}=1+\frac{9}{200}\left(T-200\right)
Multiply 45 and \frac{1}{1000} to get \frac{9}{200}.
\frac{140}{19}=1+\frac{9}{200}T-9
Use the distributive property to multiply \frac{9}{200} by T-200.
\frac{140}{19}=-8+\frac{9}{200}T
Subtract 9 from 1 to get -8.
-8+\frac{9}{200}T=\frac{140}{19}
Swap sides so that all variable terms are on the left hand side.
\frac{9}{200}T=\frac{140}{19}+8
Add 8 to both sides.
\frac{9}{200}T=\frac{292}{19}
Add \frac{140}{19} and 8 to get \frac{292}{19}.
T=\frac{292}{19}\times \frac{200}{9}
Multiply both sides by \frac{200}{9}, the reciprocal of \frac{9}{200}.
T=\frac{58400}{171}
Multiply \frac{292}{19} and \frac{200}{9} to get \frac{58400}{171}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}