Solve for t
t=\frac{-\sqrt{515}i+5}{8}\approx 0.625-2.836701429i
t=\frac{5+\sqrt{515}i}{8}\approx 0.625+2.836701429i
Share
Copied to clipboard
-16t^{2}+20t+5=140
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+20t+5-140=0
Subtract 140 from both sides.
-16t^{2}+20t-135=0
Subtract 140 from 5 to get -135.
t=\frac{-20±\sqrt{20^{2}-4\left(-16\right)\left(-135\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 20 for b, and -135 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-20±\sqrt{400-4\left(-16\right)\left(-135\right)}}{2\left(-16\right)}
Square 20.
t=\frac{-20±\sqrt{400+64\left(-135\right)}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-20±\sqrt{400-8640}}{2\left(-16\right)}
Multiply 64 times -135.
t=\frac{-20±\sqrt{-8240}}{2\left(-16\right)}
Add 400 to -8640.
t=\frac{-20±4\sqrt{515}i}{2\left(-16\right)}
Take the square root of -8240.
t=\frac{-20±4\sqrt{515}i}{-32}
Multiply 2 times -16.
t=\frac{-20+4\sqrt{515}i}{-32}
Now solve the equation t=\frac{-20±4\sqrt{515}i}{-32} when ± is plus. Add -20 to 4i\sqrt{515}.
t=\frac{-\sqrt{515}i+5}{8}
Divide -20+4i\sqrt{515} by -32.
t=\frac{-4\sqrt{515}i-20}{-32}
Now solve the equation t=\frac{-20±4\sqrt{515}i}{-32} when ± is minus. Subtract 4i\sqrt{515} from -20.
t=\frac{5+\sqrt{515}i}{8}
Divide -20-4i\sqrt{515} by -32.
t=\frac{-\sqrt{515}i+5}{8} t=\frac{5+\sqrt{515}i}{8}
The equation is now solved.
-16t^{2}+20t+5=140
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+20t=140-5
Subtract 5 from both sides.
-16t^{2}+20t=135
Subtract 5 from 140 to get 135.
\frac{-16t^{2}+20t}{-16}=\frac{135}{-16}
Divide both sides by -16.
t^{2}+\frac{20}{-16}t=\frac{135}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{5}{4}t=\frac{135}{-16}
Reduce the fraction \frac{20}{-16} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{5}{4}t=-\frac{135}{16}
Divide 135 by -16.
t^{2}-\frac{5}{4}t+\left(-\frac{5}{8}\right)^{2}=-\frac{135}{16}+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{5}{4}t+\frac{25}{64}=-\frac{135}{16}+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{5}{4}t+\frac{25}{64}=-\frac{515}{64}
Add -\frac{135}{16} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{5}{8}\right)^{2}=-\frac{515}{64}
Factor t^{2}-\frac{5}{4}t+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{515}{64}}
Take the square root of both sides of the equation.
t-\frac{5}{8}=\frac{\sqrt{515}i}{8} t-\frac{5}{8}=-\frac{\sqrt{515}i}{8}
Simplify.
t=\frac{5+\sqrt{515}i}{8} t=\frac{-\sqrt{515}i+5}{8}
Add \frac{5}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}