14.5 = \frac{ R \times V }{ { \left(R+1 \right) }^{ } }
Solve for V
V=14.5+\frac{29}{2R}
R\neq 0\text{ and }R\neq -1
Solve for R
R=\frac{29}{2\left(V-14.5\right)}
V\neq 0\text{ and }V\neq \frac{29}{2}
Share
Copied to clipboard
14.5\left(R+1\right)=R\times V
Multiply both sides of the equation by R+1.
14.5R+14.5=R\times V
Use the distributive property to multiply 14.5 by R+1.
R\times V=14.5R+14.5
Swap sides so that all variable terms are on the left hand side.
RV=\frac{29R+29}{2}
The equation is in standard form.
\frac{RV}{R}=\frac{29R+29}{2R}
Divide both sides by R.
V=\frac{29R+29}{2R}
Dividing by R undoes the multiplication by R.
V=\frac{29}{2}+\frac{29}{2R}
Divide \frac{29+29R}{2} by R.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}