Solve for x
x=\frac{\sqrt{5794745}}{11}+385\approx 603.838878048
x=-\frac{\sqrt{5794745}}{11}+385\approx 166.161121952
Graph
Share
Copied to clipboard
28.6\times 250\left(385-\frac{x}{2}\right)x+720\times 402\left(385-35\right)=460000000
Multiply both sides of the equation by 2.
7150\left(385-\frac{x}{2}\right)x+720\times 402\left(385-35\right)=460000000
Multiply 28.6 and 250 to get 7150.
\left(2752750+7150\left(-\frac{x}{2}\right)\right)x+720\times 402\left(385-35\right)=460000000
Use the distributive property to multiply 7150 by 385-\frac{x}{2}.
\left(2752750-3575x\right)x+720\times 402\left(385-35\right)=460000000
Cancel out 2, the greatest common factor in 7150 and 2.
2752750x-3575x^{2}+720\times 402\left(385-35\right)=460000000
Use the distributive property to multiply 2752750-3575x by x.
2752750x-3575x^{2}+289440\left(385-35\right)=460000000
Multiply 720 and 402 to get 289440.
2752750x-3575x^{2}+289440\times 350=460000000
Subtract 35 from 385 to get 350.
2752750x-3575x^{2}+101304000=460000000
Multiply 289440 and 350 to get 101304000.
2752750x-3575x^{2}+101304000-460000000=0
Subtract 460000000 from both sides.
2752750x-3575x^{2}-358696000=0
Subtract 460000000 from 101304000 to get -358696000.
-3575x^{2}+2752750x-358696000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2752750±\sqrt{2752750^{2}-4\left(-3575\right)\left(-358696000\right)}}{2\left(-3575\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3575 for a, 2752750 for b, and -358696000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2752750±\sqrt{7577632562500-4\left(-3575\right)\left(-358696000\right)}}{2\left(-3575\right)}
Square 2752750.
x=\frac{-2752750±\sqrt{7577632562500+14300\left(-358696000\right)}}{2\left(-3575\right)}
Multiply -4 times -3575.
x=\frac{-2752750±\sqrt{7577632562500-5129352800000}}{2\left(-3575\right)}
Multiply 14300 times -358696000.
x=\frac{-2752750±\sqrt{2448279762500}}{2\left(-3575\right)}
Add 7577632562500 to -5129352800000.
x=\frac{-2752750±650\sqrt{5794745}}{2\left(-3575\right)}
Take the square root of 2448279762500.
x=\frac{-2752750±650\sqrt{5794745}}{-7150}
Multiply 2 times -3575.
x=\frac{650\sqrt{5794745}-2752750}{-7150}
Now solve the equation x=\frac{-2752750±650\sqrt{5794745}}{-7150} when ± is plus. Add -2752750 to 650\sqrt{5794745}.
x=-\frac{\sqrt{5794745}}{11}+385
Divide -2752750+650\sqrt{5794745} by -7150.
x=\frac{-650\sqrt{5794745}-2752750}{-7150}
Now solve the equation x=\frac{-2752750±650\sqrt{5794745}}{-7150} when ± is minus. Subtract 650\sqrt{5794745} from -2752750.
x=\frac{\sqrt{5794745}}{11}+385
Divide -2752750-650\sqrt{5794745} by -7150.
x=-\frac{\sqrt{5794745}}{11}+385 x=\frac{\sqrt{5794745}}{11}+385
The equation is now solved.
28.6\times 250\left(385-\frac{x}{2}\right)x+720\times 402\left(385-35\right)=460000000
Multiply both sides of the equation by 2.
7150\left(385-\frac{x}{2}\right)x+720\times 402\left(385-35\right)=460000000
Multiply 28.6 and 250 to get 7150.
\left(2752750+7150\left(-\frac{x}{2}\right)\right)x+720\times 402\left(385-35\right)=460000000
Use the distributive property to multiply 7150 by 385-\frac{x}{2}.
\left(2752750-3575x\right)x+720\times 402\left(385-35\right)=460000000
Cancel out 2, the greatest common factor in 7150 and 2.
2752750x-3575x^{2}+720\times 402\left(385-35\right)=460000000
Use the distributive property to multiply 2752750-3575x by x.
2752750x-3575x^{2}+289440\left(385-35\right)=460000000
Multiply 720 and 402 to get 289440.
2752750x-3575x^{2}+289440\times 350=460000000
Subtract 35 from 385 to get 350.
2752750x-3575x^{2}+101304000=460000000
Multiply 289440 and 350 to get 101304000.
2752750x-3575x^{2}=460000000-101304000
Subtract 101304000 from both sides.
2752750x-3575x^{2}=358696000
Subtract 101304000 from 460000000 to get 358696000.
-3575x^{2}+2752750x=358696000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3575x^{2}+2752750x}{-3575}=\frac{358696000}{-3575}
Divide both sides by -3575.
x^{2}+\frac{2752750}{-3575}x=\frac{358696000}{-3575}
Dividing by -3575 undoes the multiplication by -3575.
x^{2}-770x=\frac{358696000}{-3575}
Divide 2752750 by -3575.
x^{2}-770x=-\frac{1103680}{11}
Reduce the fraction \frac{358696000}{-3575} to lowest terms by extracting and canceling out 325.
x^{2}-770x+\left(-385\right)^{2}=-\frac{1103680}{11}+\left(-385\right)^{2}
Divide -770, the coefficient of the x term, by 2 to get -385. Then add the square of -385 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-770x+148225=-\frac{1103680}{11}+148225
Square -385.
x^{2}-770x+148225=\frac{526795}{11}
Add -\frac{1103680}{11} to 148225.
\left(x-385\right)^{2}=\frac{526795}{11}
Factor x^{2}-770x+148225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-385\right)^{2}}=\sqrt{\frac{526795}{11}}
Take the square root of both sides of the equation.
x-385=\frac{\sqrt{5794745}}{11} x-385=-\frac{\sqrt{5794745}}{11}
Simplify.
x=\frac{\sqrt{5794745}}{11}+385 x=-\frac{\sqrt{5794745}}{11}+385
Add 385 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}