Solve for n
n=\log_{\frac{67}{2400}}\left(49.1\right)\approx -1.088116493
Share
Copied to clipboard
\frac{14730}{300}=\left(\frac{1\left(1+\frac{0\times 385}{12}\right)}{\frac{0.335}{12}}\right)^{-n}
Divide both sides by 300.
\frac{491}{10}=\left(\frac{1\left(1+\frac{0\times 385}{12}\right)}{\frac{0.335}{12}}\right)^{-n}
Reduce the fraction \frac{14730}{300} to lowest terms by extracting and canceling out 30.
\frac{491}{10}=\left(\frac{1\left(1+\frac{0}{12}\right)}{\frac{0.335}{12}}\right)^{-n}
Multiply 0 and 385 to get 0.
\frac{491}{10}=\left(\frac{1\left(1+0\right)}{\frac{0.335}{12}}\right)^{-n}
Zero divided by any non-zero number gives zero.
\frac{491}{10}=\left(\frac{1\times 1}{\frac{0.335}{12}}\right)^{-n}
Add 1 and 0 to get 1.
\frac{491}{10}=\left(\frac{1}{\frac{0.335}{12}}\right)^{-n}
Multiply 1 and 1 to get 1.
\frac{491}{10}=\left(\frac{1}{\frac{335}{12000}}\right)^{-n}
Expand \frac{0.335}{12} by multiplying both numerator and the denominator by 1000.
\frac{491}{10}=\left(\frac{1}{\frac{67}{2400}}\right)^{-n}
Reduce the fraction \frac{335}{12000} to lowest terms by extracting and canceling out 5.
\frac{491}{10}=\left(1\times \frac{2400}{67}\right)^{-n}
Divide 1 by \frac{67}{2400} by multiplying 1 by the reciprocal of \frac{67}{2400}.
\frac{491}{10}=\left(\frac{2400}{67}\right)^{-n}
Multiply 1 and \frac{2400}{67} to get \frac{2400}{67}.
\left(\frac{2400}{67}\right)^{-n}=\frac{491}{10}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{2400}{67}\right)^{-n})=\log(\frac{491}{10})
Take the logarithm of both sides of the equation.
-n\log(\frac{2400}{67})=\log(\frac{491}{10})
The logarithm of a number raised to a power is the power times the logarithm of the number.
-n=\frac{\log(\frac{491}{10})}{\log(\frac{2400}{67})}
Divide both sides by \log(\frac{2400}{67}).
-n=\log_{\frac{2400}{67}}\left(\frac{491}{10}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=\frac{\ln(\frac{491}{10})}{-\ln(\frac{2400}{67})}
Divide both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}