Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\frac{14730}{300}=\left(\frac{1\left(1+\frac{0\times 385}{12}\right)}{\frac{0.335}{12}}\right)^{-n}
Divide both sides by 300.
\frac{491}{10}=\left(\frac{1\left(1+\frac{0\times 385}{12}\right)}{\frac{0.335}{12}}\right)^{-n}
Reduce the fraction \frac{14730}{300} to lowest terms by extracting and canceling out 30.
\frac{491}{10}=\left(\frac{1\left(1+\frac{0}{12}\right)}{\frac{0.335}{12}}\right)^{-n}
Multiply 0 and 385 to get 0.
\frac{491}{10}=\left(\frac{1\left(1+0\right)}{\frac{0.335}{12}}\right)^{-n}
Zero divided by any non-zero number gives zero.
\frac{491}{10}=\left(\frac{1\times 1}{\frac{0.335}{12}}\right)^{-n}
Add 1 and 0 to get 1.
\frac{491}{10}=\left(\frac{1}{\frac{0.335}{12}}\right)^{-n}
Multiply 1 and 1 to get 1.
\frac{491}{10}=\left(\frac{1}{\frac{335}{12000}}\right)^{-n}
Expand \frac{0.335}{12} by multiplying both numerator and the denominator by 1000.
\frac{491}{10}=\left(\frac{1}{\frac{67}{2400}}\right)^{-n}
Reduce the fraction \frac{335}{12000} to lowest terms by extracting and canceling out 5.
\frac{491}{10}=\left(1\times \frac{2400}{67}\right)^{-n}
Divide 1 by \frac{67}{2400} by multiplying 1 by the reciprocal of \frac{67}{2400}.
\frac{491}{10}=\left(\frac{2400}{67}\right)^{-n}
Multiply 1 and \frac{2400}{67} to get \frac{2400}{67}.
\left(\frac{2400}{67}\right)^{-n}=\frac{491}{10}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{2400}{67}\right)^{-n})=\log(\frac{491}{10})
Take the logarithm of both sides of the equation.
-n\log(\frac{2400}{67})=\log(\frac{491}{10})
The logarithm of a number raised to a power is the power times the logarithm of the number.
-n=\frac{\log(\frac{491}{10})}{\log(\frac{2400}{67})}
Divide both sides by \log(\frac{2400}{67}).
-n=\log_{\frac{2400}{67}}\left(\frac{491}{10}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=\frac{\ln(\frac{491}{10})}{-\ln(\frac{2400}{67})}
Divide both sides by -1.