Factor
\left(7y-5\right)\left(2y+1\right)
Evaluate
\left(7y-5\right)\left(2y+1\right)
Graph
Share
Copied to clipboard
a+b=-3 ab=14\left(-5\right)=-70
Factor the expression by grouping. First, the expression needs to be rewritten as 14y^{2}+ay+by-5. To find a and b, set up a system to be solved.
1,-70 2,-35 5,-14 7,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -70.
1-70=-69 2-35=-33 5-14=-9 7-10=-3
Calculate the sum for each pair.
a=-10 b=7
The solution is the pair that gives sum -3.
\left(14y^{2}-10y\right)+\left(7y-5\right)
Rewrite 14y^{2}-3y-5 as \left(14y^{2}-10y\right)+\left(7y-5\right).
2y\left(7y-5\right)+7y-5
Factor out 2y in 14y^{2}-10y.
\left(7y-5\right)\left(2y+1\right)
Factor out common term 7y-5 by using distributive property.
14y^{2}-3y-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 14\left(-5\right)}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-3\right)±\sqrt{9-4\times 14\left(-5\right)}}{2\times 14}
Square -3.
y=\frac{-\left(-3\right)±\sqrt{9-56\left(-5\right)}}{2\times 14}
Multiply -4 times 14.
y=\frac{-\left(-3\right)±\sqrt{9+280}}{2\times 14}
Multiply -56 times -5.
y=\frac{-\left(-3\right)±\sqrt{289}}{2\times 14}
Add 9 to 280.
y=\frac{-\left(-3\right)±17}{2\times 14}
Take the square root of 289.
y=\frac{3±17}{2\times 14}
The opposite of -3 is 3.
y=\frac{3±17}{28}
Multiply 2 times 14.
y=\frac{20}{28}
Now solve the equation y=\frac{3±17}{28} when ± is plus. Add 3 to 17.
y=\frac{5}{7}
Reduce the fraction \frac{20}{28} to lowest terms by extracting and canceling out 4.
y=-\frac{14}{28}
Now solve the equation y=\frac{3±17}{28} when ± is minus. Subtract 17 from 3.
y=-\frac{1}{2}
Reduce the fraction \frac{-14}{28} to lowest terms by extracting and canceling out 14.
14y^{2}-3y-5=14\left(y-\frac{5}{7}\right)\left(y-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{7} for x_{1} and -\frac{1}{2} for x_{2}.
14y^{2}-3y-5=14\left(y-\frac{5}{7}\right)\left(y+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
14y^{2}-3y-5=14\times \frac{7y-5}{7}\left(y+\frac{1}{2}\right)
Subtract \frac{5}{7} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
14y^{2}-3y-5=14\times \frac{7y-5}{7}\times \frac{2y+1}{2}
Add \frac{1}{2} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
14y^{2}-3y-5=14\times \frac{\left(7y-5\right)\left(2y+1\right)}{7\times 2}
Multiply \frac{7y-5}{7} times \frac{2y+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
14y^{2}-3y-5=14\times \frac{\left(7y-5\right)\left(2y+1\right)}{14}
Multiply 7 times 2.
14y^{2}-3y-5=\left(7y-5\right)\left(2y+1\right)
Cancel out 14, the greatest common factor in 14 and 14.
x ^ 2 -\frac{3}{14}x -\frac{5}{14} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 14
r + s = \frac{3}{14} rs = -\frac{5}{14}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{3}{28} - u s = \frac{3}{28} + u
Two numbers r and s sum up to \frac{3}{14} exactly when the average of the two numbers is \frac{1}{2}*\frac{3}{14} = \frac{3}{28}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{3}{28} - u) (\frac{3}{28} + u) = -\frac{5}{14}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{14}
\frac{9}{784} - u^2 = -\frac{5}{14}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{14}-\frac{9}{784} = -\frac{289}{784}
Simplify the expression by subtracting \frac{9}{784} on both sides
u^2 = \frac{289}{784} u = \pm\sqrt{\frac{289}{784}} = \pm \frac{17}{28}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{3}{28} - \frac{17}{28} = -0.500 s = \frac{3}{28} + \frac{17}{28} = 0.714
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}