Evaluate
-7x^{2}-28x-105
Expand
-7x^{2}-28x-105
Graph
Share
Copied to clipboard
14x-\left(9x^{2}+30x+25\right)-\left(10-x\right)\left(2x+8\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+5\right)^{2}.
14x-9x^{2}-30x-25-\left(10-x\right)\left(2x+8\right)
To find the opposite of 9x^{2}+30x+25, find the opposite of each term.
-16x-9x^{2}-25-\left(10-x\right)\left(2x+8\right)
Combine 14x and -30x to get -16x.
-16x-9x^{2}-25-\left(12x+80-2x^{2}\right)
Use the distributive property to multiply 10-x by 2x+8 and combine like terms.
-16x-9x^{2}-25-12x-80+2x^{2}
To find the opposite of 12x+80-2x^{2}, find the opposite of each term.
-28x-9x^{2}-25-80+2x^{2}
Combine -16x and -12x to get -28x.
-28x-9x^{2}-105+2x^{2}
Subtract 80 from -25 to get -105.
-28x-7x^{2}-105
Combine -9x^{2} and 2x^{2} to get -7x^{2}.
14x-\left(9x^{2}+30x+25\right)-\left(10-x\right)\left(2x+8\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+5\right)^{2}.
14x-9x^{2}-30x-25-\left(10-x\right)\left(2x+8\right)
To find the opposite of 9x^{2}+30x+25, find the opposite of each term.
-16x-9x^{2}-25-\left(10-x\right)\left(2x+8\right)
Combine 14x and -30x to get -16x.
-16x-9x^{2}-25-\left(12x+80-2x^{2}\right)
Use the distributive property to multiply 10-x by 2x+8 and combine like terms.
-16x-9x^{2}-25-12x-80+2x^{2}
To find the opposite of 12x+80-2x^{2}, find the opposite of each term.
-28x-9x^{2}-25-80+2x^{2}
Combine -16x and -12x to get -28x.
-28x-9x^{2}-105+2x^{2}
Subtract 80 from -25 to get -105.
-28x-7x^{2}-105
Combine -9x^{2} and 2x^{2} to get -7x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}