Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

14x^{2}+60x-64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}-4\times 14\left(-64\right)}}{2\times 14}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 14 for a, 60 for b, and -64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\times 14\left(-64\right)}}{2\times 14}
Square 60.
x=\frac{-60±\sqrt{3600-56\left(-64\right)}}{2\times 14}
Multiply -4 times 14.
x=\frac{-60±\sqrt{3600+3584}}{2\times 14}
Multiply -56 times -64.
x=\frac{-60±\sqrt{7184}}{2\times 14}
Add 3600 to 3584.
x=\frac{-60±4\sqrt{449}}{2\times 14}
Take the square root of 7184.
x=\frac{-60±4\sqrt{449}}{28}
Multiply 2 times 14.
x=\frac{4\sqrt{449}-60}{28}
Now solve the equation x=\frac{-60±4\sqrt{449}}{28} when ± is plus. Add -60 to 4\sqrt{449}.
x=\frac{\sqrt{449}-15}{7}
Divide -60+4\sqrt{449} by 28.
x=\frac{-4\sqrt{449}-60}{28}
Now solve the equation x=\frac{-60±4\sqrt{449}}{28} when ± is minus. Subtract 4\sqrt{449} from -60.
x=\frac{-\sqrt{449}-15}{7}
Divide -60-4\sqrt{449} by 28.
x=\frac{\sqrt{449}-15}{7} x=\frac{-\sqrt{449}-15}{7}
The equation is now solved.
14x^{2}+60x-64=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
14x^{2}+60x-64-\left(-64\right)=-\left(-64\right)
Add 64 to both sides of the equation.
14x^{2}+60x=-\left(-64\right)
Subtracting -64 from itself leaves 0.
14x^{2}+60x=64
Subtract -64 from 0.
\frac{14x^{2}+60x}{14}=\frac{64}{14}
Divide both sides by 14.
x^{2}+\frac{60}{14}x=\frac{64}{14}
Dividing by 14 undoes the multiplication by 14.
x^{2}+\frac{30}{7}x=\frac{64}{14}
Reduce the fraction \frac{60}{14} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{30}{7}x=\frac{32}{7}
Reduce the fraction \frac{64}{14} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{30}{7}x+\left(\frac{15}{7}\right)^{2}=\frac{32}{7}+\left(\frac{15}{7}\right)^{2}
Divide \frac{30}{7}, the coefficient of the x term, by 2 to get \frac{15}{7}. Then add the square of \frac{15}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{30}{7}x+\frac{225}{49}=\frac{32}{7}+\frac{225}{49}
Square \frac{15}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{30}{7}x+\frac{225}{49}=\frac{449}{49}
Add \frac{32}{7} to \frac{225}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{15}{7}\right)^{2}=\frac{449}{49}
Factor x^{2}+\frac{30}{7}x+\frac{225}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{7}\right)^{2}}=\sqrt{\frac{449}{49}}
Take the square root of both sides of the equation.
x+\frac{15}{7}=\frac{\sqrt{449}}{7} x+\frac{15}{7}=-\frac{\sqrt{449}}{7}
Simplify.
x=\frac{\sqrt{449}-15}{7} x=\frac{-\sqrt{449}-15}{7}
Subtract \frac{15}{7} from both sides of the equation.