Solve for x
x=\frac{23x_{12}-3}{14}
Solve for x_12
x_{12}=\frac{14x+3}{23}
Graph
Share
Copied to clipboard
20x+3=6x+23x_{12}
Combine 14x and 6x to get 20x.
20x+3-6x=23x_{12}
Subtract 6x from both sides.
14x+3=23x_{12}
Combine 20x and -6x to get 14x.
14x=23x_{12}-3
Subtract 3 from both sides.
\frac{14x}{14}=\frac{23x_{12}-3}{14}
Divide both sides by 14.
x=\frac{23x_{12}-3}{14}
Dividing by 14 undoes the multiplication by 14.
20x+3=6x+23x_{12}
Combine 14x and 6x to get 20x.
6x+23x_{12}=20x+3
Swap sides so that all variable terms are on the left hand side.
23x_{12}=20x+3-6x
Subtract 6x from both sides.
23x_{12}=14x+3
Combine 20x and -6x to get 14x.
\frac{23x_{12}}{23}=\frac{14x+3}{23}
Divide both sides by 23.
x_{12}=\frac{14x+3}{23}
Dividing by 23 undoes the multiplication by 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}