Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

7\left(2t^{2}+3t\right)
Factor out 7.
t\left(2t+3\right)
Consider 2t^{2}+3t. Factor out t.
7t\left(2t+3\right)
Rewrite the complete factored expression.
14t^{2}+21t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-21±\sqrt{21^{2}}}{2\times 14}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-21±21}{2\times 14}
Take the square root of 21^{2}.
t=\frac{-21±21}{28}
Multiply 2 times 14.
t=\frac{0}{28}
Now solve the equation t=\frac{-21±21}{28} when ± is plus. Add -21 to 21.
t=0
Divide 0 by 28.
t=-\frac{42}{28}
Now solve the equation t=\frac{-21±21}{28} when ± is minus. Subtract 21 from -21.
t=-\frac{3}{2}
Reduce the fraction \frac{-42}{28} to lowest terms by extracting and canceling out 14.
14t^{2}+21t=14t\left(t-\left(-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{3}{2} for x_{2}.
14t^{2}+21t=14t\left(t+\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
14t^{2}+21t=14t\times \frac{2t+3}{2}
Add \frac{3}{2} to t by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
14t^{2}+21t=7t\left(2t+3\right)
Cancel out 2, the greatest common factor in 14 and 2.