Solve for c
c<3
Share
Copied to clipboard
70-\left(2c+4\right)>20c
Multiply both sides of the equation by 5. Since 5 is positive, the inequality direction remains the same.
70-2c-4>20c
To find the opposite of 2c+4, find the opposite of each term.
66-2c>20c
Subtract 4 from 70 to get 66.
66-2c-20c>0
Subtract 20c from both sides.
66-22c>0
Combine -2c and -20c to get -22c.
-22c>-66
Subtract 66 from both sides. Anything subtracted from zero gives its negation.
c<\frac{-66}{-22}
Divide both sides by -22. Since -22 is negative, the inequality direction is changed.
c<3
Divide -66 by -22 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}